
+ Full RTL design
and synthesized

RipTide: A Programmable, Energy-Minimal Dataflow Compiler and Architecture
Graham Gobieski, Souradip Ghosh, Tony Nowatzki*, Todd C. Mowry, Nathan Beckmann, Brandon Lucia

Carnegie Mellon University, *UCLA

Must sustainably & efficiently
compute at the edge. How?
1. Run variety of
apps on ultra-low
power (ULP), µWs

Smart devices at the extreme
edge are rapidly emerging
with huge industrial impact

Tiny, smart sensor devices that enable
advanced processing or inference

2. More compute
on-device, less
communication2

Extreme Edge Broadcast Cloud

Trillions of devices coming!1

Multi-year sensor
deployment

Goal: develop a highly flexible
and energy efficient compute

Medical
Wearables

Wildlife
Monitoring

Nano
Satellites

2. Inflexible by
design, limited
to single app

1. Wastes up to
90% energy on
non-compute3

CGRAs are flexible & efficient!
Energy efficiency

Fl
ex

ib
ili

ty

CPU

ASIC

CGRA

1.

2. a

What is a coarse-grained
reconfigurable array (CGRA)?

Grid of processing elements
(PE) connected by a NoC.

1. PEs support “coarse” op
type (add, load, shift, etc.)

10 apps from
linalg, graph
processing, and
signal processing

x: add ...
y: add ...
z: mul x,y

r

r

r rr

r

r

r r

r

r rr

r

r

r

r

+ +

*

2. Compilers extract
code into a dataflow
graph to map to a
CGRA (often small loops).

3. CGRA execution can be
statically scheduled or use
“dataflow firing”: a PE “fires”
once its inputs arrive via the
NoC (no fetch/decode).

Insight: To achieve
efficiency, CGRAs
need to run entire
apps and support
common PL idioms

1 void foo (...) {
2 for (i = 0..n) {
3 vlh v1, a + i
4 vadd v3, v1, v2
5 vsh b + i, v3

Prior ULP CGRAs are limited
Runs only affine
inner loops. No
irregular control-
flow or memory.

CGRA code in assembly4

1Arm, “How to build a trillion connected things.”
2Gobieski et al., “Intelligence Beyond the Edge: Inference
on Intermittent Embedded Systems.” (ASPLOS ‘19). 3Horowitz, “Computing’s energy problem (and what we can do about it).” (ISSCC ’14).

4Gobieski et al., “SNAFU: An Ultra-Low-Power, Energy-Minimal
CGRA-Generation Framework and Architecture.” (ISCA ‘21).

RipTide is a new ULP CGRA compiler & arch.

Ld

St

Ou
te
r

In
ne
r

1 #riptide void foo
2 (int * restrict a, b) {
3 while (!q.empty()) {
4 n = q.pop()
5 for (i in 0..n)
6 if (b[a[i]]) ...
7 }
8 }

C code (lightly annotated)

+ Ran an entire
DNN on RipTide!

M

R R

RR

St

R R

RR

A

R R

RR

M

R R

RR

DFG

Handles arbitrary code via
1) Complex control-flow
2) Irregular mem. accesses
3) Enforced mem. ordering

6.6x
better

Programmability Energy-Efficiency Performance

6.2x
better

Generated CGRA
Hardware

= SAT/ILP mapper (to CGRA)
= Full compiler in LLVM

Runs larger apps by
reusing routers to
execute control-flow.
Frees PEs for more ops.

Optimizes away
ops, reduces op
subgraphs

