RipTide: A Programmable, Energy-Minimal Dataflow Compiler and Architecture

Graham Gobieski, Souradip Ghosh, Tony Nowatzki*, Todd C. Mowry, Nathan Beckmann, Brandon Lucia
Carnegie Mellon University, *UCLA

at the
are rapidly emerging
with huge industrial impact

Bt - B
i A

)

)
)

[D)

D)

Cloud

Broadcast

—

Tiny, smart sensor devices that enable
advanced processing or inference

= aD

cCD

aad

§i§# :+* ﬁz

Nano Medical Wildlite
Satellites Wearables Monitoring

Trillions of devices coming!’

Must sustainably & efficiently

compute at the edge. How?

1. Run variety of
apps on ultra-low
power (ULP), yWs

2. More compute
on-device, |less
communication?

Multi-year sensor
deployment

————————————

s T ===
_———————

Arm, “How to build a trillion connected things.”
2Gobieski et al., “Intelligence Beyond the Edge: Inference

. Goal: develop a highly flexible :

and energy efficient compute

e 1. = ~

* 1. Wastes up to
90% energy on
non-compute?

CPU

Flexibility

_-v 2. Inflexible by
design, limited
to single app

Energy efficiency

What is a coarse-grained
reconfigurable array (CGRA)?

[

7 Grid of processing elements
1 (PE)connected by a NoC.

1. PEs support “coarse” op
type (add, load, shift, etc.)

2. Compilers extract x: add ...

code into a dataflow |Y* add ... | _J

graph to map to a 28 mut X,y

CGRA (often small loops). /

e

3. CGRA execution can be
statically scheduled or use
"dataflow firing"”: a PE "fires”
once its inputs arrive via the

NoC (no tfetch/decode).

CGRAs are flexible & efficient!

Prior ULP CGRAs are limited Insight: To achieve

. efficiency, CGRAs

. o Runs only affine .
oin(llvzl ;.:)i{ inner loops. NO p need to run entire
vadd v3, vl, v2 irregular control- apps and support

3

4

> vsh b + 1, v3 flow or memory.
C

GRA code in assembly® common PL idioms

RipTide is a new ULP CGRA compiler & arch.

C code (lightly annotated) : DFG Generated CGRA
1 #riptide void foo & Hardware

2 (int * a, b) { S Ik —h
3 while (!q.empty()) { IR R R
4 n = q.pop()

5 for (i in 0..n) A \7

6 if (b[a[i]]) --- (e’

7 } S “A -> i 2 i3
8 } $ M St
Handles arbitrary code via () = = =
1) Complex control-flow (st) " et
2) Irregular mem. accesses Optimizes away Runs. larger apps by
3) Enforced mem. ordering reusing routers to

ops, reduces o
X P execute control-flow.

=P = Full compiler in LLVM subgraphs
=p = SAT/ILP mapper (to CGRA) Frees PEs for more ops.
Programmability Energy-Efficiency Performance 10 apps from
C-code Asembly o~ g Lo 6.2x linalg, graph
73 6-b : /:6-b .tt processing, and
L 40- : etter % etter signal processing
O — w /e e
O n 4- - 4 -
- o = + Full RTL design
O ‘S — .
3 20 - 3 = and synthesized
= > 2 - o2/ B B B
— EO o
e = = b k _“F ------------ + Ran an entire
0 “ 0 - oL DNN on RipTide!
5 5 p 8 5 8 2 3 s g g 3
3 8 < E 5 8 < 3 & < K
A2 EF 4232 4 F:

