
Linux APT Detection
Souradip Ghosh, Dylan Kennedy, Lenin Estrada, Sherwin Shen

Outline

● Quick Recap

● Modifications
○ Recap --- Midterm

○ Propagation policies

○ Tag attenuation and tag decay

○ Alarm generation and real-time detection

● Results

● Future Work

Outline

● Quick Recap

● Modifications
○ Recap --- Midterm

○ Propagation policies

○ Tag attenuation and tag decay

○ Alarm generation and real-time detection

● Results

● Future Work

Quick Recap: MORSE

● A tag-based approach to detecting APTs in real time
○ An addition to the conventional provenance graph approach

● Builds data tags and subject tags to denote the events that
occur with a node

● Defines propagation policies to track “suspiciousness”
○ What happens when a process reads or writes a file, etc?
○ Tag decay and Tag attenuation --- Propagating in a clever way

Quick Recap: Problem Statement

Problem: How can we build an real-time Endpoint Detection and
Response (EDR) system on Linux that is both efficient and accurate?

Quick Recap: Problem Statement

Problem: How can we build an real-time Endpoint Detection and
Response (EDR) system on Linux that is both efficient and accurate?

We use the benefits of MORSE as inspiration --- efficient APT
detection and reduction of false positives

Quick Recap: Contributions

● Tag Initialization
○ Determined starting Data Tag values

● Tag Propagation
○ How these values transfer to children

● Tag Decay
○ Have suspicious processes slowly converge towards benign over time

● Judge Policies
○ Suppress false positive alerts from existing model based

Quick Recap: Framework

Quick Recap: Framework

Quick Recap: Framework

Outline

● Quick Recap

● Modifications
○ Recap --- Midterm

○ Propagation policies

○ Tag attenuation and tag decay

○ Alarm generation and real-time detection

● Results

● Future Work

Outline

● Quick Recap

● Modifications
○ Recap --- Midterm

○ Propagation policies

○ Tag attenuation and tag decay

○ Alarm generation and real-time detection

● Results

● Future Work

Modification: Midterm Recap

● Developed tag decay for all nodes (including process and files)

● Wrote the most important propagation policies

● Picked arbitrary initialization and convergence values

Outline

● Quick Recap

● Modifications
○ Recap --- Midterm

○ Propagation policies

○ Tag attenuation and tag decay

○ Alarm generation and real-time detection

● Results

● Future Work

Modification: Propagation Policies

“Tables I and II consider the main operations that propagate tags.
Note that fork implicitly* copies the parent’s tags to the child.”

Modification: Propagation Policies --- Code Sample

Outline

● Quick Recap

● Modifications
○ Recap --- Midterm

○ Propagation policies

○ Tag attenuation and tag decay

○ Alarm generation and real-time detection

● Results

● Future Work

Modification: Tag Decay

● Decay c and i tags depending on environment

Modification: Tag Decay

● Decay c and i tags depending on environment

Modification: Tag Attenuation

● Additive approach

● Use min to extract the most confidential (and lowest integrity)
from the data contained within

Modification: Mappings

● Tune c and i tag values from existing values based on label
description

Modification: Handling Suspicious Nodes

● A suspicious node will decay and attenuate much slower than
benign nodes

● What if a node that had decayed to benign status experiences a
suspicious event again?

○ Node’s data/subject tags are reset to the values corresponding to event

○ Accomplished by parsing new EventForCS and LabelForCS objects

● A node will remain suspicious if it’s data/subject tag values
range below 0.5

Outline

● Quick Recap

● Modifications
○ Recap --- Midterm

○ Propagation policies

○ Tag attenuation and tag decay

○ Alarm generation and real-time detection

● Results

● Future Work

Modification: Alarm Generation

● Previously --- an alarm will be generated when the labels
aggregated on a node satisfy certain conditions
○ If a process or its ancestors had network connection and the process read

some sensitive files, an alarm is generated

● Now --- we impose another prerequisite on alarm generation:
the process is not benign
○ The i tag has to be below 0.5 to decrease number of the false positives

Modification: Real-time Detection

● EDR mimics real-time detection by setting a minimum
granularity for time between events on the same node
○ Decay function exponentiates at a multiple of this granularity

○ Currently set to 100 nanoseconds --- a promising granularity for the
DARPA data set

Outline

● Quick Recap

● Modifications
○ Recap --- Midterm

○ Propagation policies

○ Tag attenuation and tag decay

○ Alarm generation and real-time detection

● Results

● Future Work

Results: Methodology

● Testing data sliced from the DARPA data set
○ 3.5 hours of trace data, covering a privilege escalation attack

● Our EDR parses and analyzes the data offline, generates alarms
and provenance graphs once malicious behaviors are detected

Results: Our Progress

● Currently have two (slightly) different versions of the framework
that include tag decay, tag attenuation, and propagation

● Both have the following:
○ Initialization values --- iTag = 0.51, cTag = 0.51, sTag = 0.75

○ Convergence values --- iTag = 0.75, cTag = 0.75

● Differences:
○ More specific about handling suspicious nodes
○ Capping convergence for i and c tags (to prevent undefined behavior)

Results: Alarm Generation

● Original framework:
○ 708 alarms

● Our framework:
○ Version 1: 267 alarms --- 62% decrease

○ Version 2: 650 alarms --- 8% decrease

● Accuracy --- all three frameworks generate alarms for the true
positive/ground truth
○

Full Size

https://drive.google.com/open?id=1Ug808iZY0TJZRn1Z48Yezg5-0zawnOjF

Results: Space Complexity

● EDR efficiency relies on memory usage --- smaller node objects
○ Faster to parse and analyze

○ Memory usage is lower

○ Increases runtime performance

Outline

● Quick Recap

● Modifications
○ Recap --- Midterm

○ Propagation policies

○ Tag attenuation and tag decay

○ Alarm generation and real-time detection

● Results

● Future Work

Future Work: “Hotness”

● Motivation --- Why?
○ Decaying and/or attenuating too early leads to a loss of accuracy

○ Some APTs are very drawn out, some have bursts of malicious activity

● We want to control when we decay and attenuate

Future Work: “Hotness”

● “Hotness” metric is a solution to control decay/attenuation:
○ Each node will not be decayed and/or attenuated if the node is visited

very frequently in a short amount of time

○ We want to keep the node to maintain accuracy of the events even
though it may end up being benign

<0.6, 0.6> <0.6, 0.6> <0.71, 0.71>

Time

Future Work: Tuning Convergence/Init Values

● If initialization and convergence values for data tags, decay, and
attenuation are inaccurate --- results can be inaccurate

○ Can lead to quick decay --- not enough and often false alarms

○ Can lead to enlarged provenance graphs

● Accuracy of our system is directly dependent on these values

Future Work: Machine Learning

● Machine learning methods are an idea to tune the values
accurately and automatically for a particular environment

● Pros: Given parameters and the detection environment, ML
models can tune initialization and convergence values correctly

● Cons: Real-time detection can slow down if a model takes time
to determine the values first

Future Work: Runtime Efficiency

● APT detection tools need to be quick --- our EDR should have
better analysis and propagation time

● Requires refactoring for runtime efficiency
○ Reducing the usage of floats

○ Using a more efficient algorithm for exponentiation --- decay

○ Handling propagation --- changing design patterns

Overall Contributions

● Tag Initialization
○ Determined starting Data Tag values based on 41 different labels

● Tag Propagation
○ How these values transfer to children based on 8 different events and 4

different Subject Tags

● Tag Decay
○ Have suspicious processes slowly converge towards benign over time

● Judge Policies
○ Suppress false positive alerts (up to 62%) from existing model

References

● Our codebase: https://github.com/nbshenxm/CS450_project (private, branch: “develop”)

● M. N. Hossain, S. Sheikhi, R. Sekar, “Combating Dependence Explosion in Forensic
Analysis Using Alternative Tag Propagation Semantics,” in Proc. USENIX Secur., 2018, pp.
1723-1740.

● M. N. Hossain, S. M. Milajerdi, J. Wang, B. Eshete, R. Gjomemo, R. Sekar, S. D. Stoller, and
V. Venkatakrishnan, “Sleuth: Real-time attack scenario reconstruction from cots audit
data,” in Proc. USENIX Secur., 2017, pp. 487–504.

● S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrishnan, “Holmes:
real-time apt detection through correlation of suspicious information flows,” arXiv
preprint arXiv:1810.01594, 2018.

https://github.com/nbshenxm/CS450_project

