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Background: Preemptive multitasking

● Preemption:
○ Yielding control is involuntary --- triggered by hardware or 

software housed in the kernel

○ Context-switching between processes/threads  

○ Scheduler decides which process/thread to switch to

● Provides a degree of fairness, completing I/O, important for 

real time systems



Background: Interrupts

● Timer interrupts are the main tool for starting context-switches
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Background: Cooperative multitasking

● Alternative to preemption

● Yielding control is voluntary --- the cooperative task decides 

when to yield control of the CPU

● Simplifies context-switching and scheduling

● Michael’s fibers implementation in Nautilus
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Motivation: Preemption overheads

● Large overheads in saving/restoring state, interrupt processing
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Motivation: Finer granularity and parallelism

● Granularity --- ‘execution’ intervals for a thread/process

● Finer granularity → maximizes parallelism1

○ Works for thread/process-parallel written code

○ Facilitates load balancing across processors

● Given large context switch overhead:
○ Finer granularity not efficient

○ Interrupt-driven timing guarantees bottom out at 100 mHz

● Finer granularity easier with smaller context-switch overheads
1 Moreira et al., The Performance Impact of Granularity Control and Functional Parallelism (2005). https://bit.ly/2k7frdQ 

https://bit.ly/2k7frdQ


Motivation: Cooperating is difficult

● For developers --- programming headaches when deciding to 

yield control

● Inaccuracies in yielding are not practical for certain systems 

(real time systems)

● Easy scenarios for starving processes/threads, unfairness

● There’s no concept of timing guarantees



Motivation

Can we achieve a system that simplifies context-switching (to 

the extent seen cooperative multitasking) while maintaining 

timing guarantees (seen with preemption)?
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Scope: Fibers in NK

● Fibers in NK designed with cooperative 

multitasking in mind:
○ No use of interrupts

○ Faster context-switches

○ Simplified scheduler

● The developer chooses when to yield (nk_fiber_yield)

● Current research focused on Michael’s fibers implementation



Scope: Fibers in NK --- Simplified approach

● Michael’s work --- fibers have lightweight context-switches
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Scope: Fibers in NK --- Rethinking the question

Can we reintroduce timing guarantees for the fibers 

implementation in Nautilus?



Agenda

1.Background

2.Motivation

3.Scope: Fibers in NK

4.Compiler-based approach

5.Mechanics of the timing transform

6.Preliminary results

7.Further research



Compiler-based approach: Measuring time

● Determine execution “time” for all code paths at compile-time

● Fibers --- the compiler injects calls to nk_fiber_yield for a 

specified granularity
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Mechanics: Instruction latency

● Timing transform analyzes instruction latencies at the bitcode 

level (middle-end)
○ Sequential analysis --- in order of a routine’s CFG

● Instruction latency --- Time (clock cycles) before the 

data/output from an instruction is available to the module



Mechanics: Simplified DFA

● Data flow analysis --- calculates accumulated latency up until a 

certain bitcode instruction

○ Utilizes function’s CFG

○ Iterate CFG breadth-first



Mechanics: Simplified DFA

● Data flow analysis --- calculates accumulated latency up until a 

certain bitcode instruction

○ Utilizes function’s CFG

○ Iterate CFG breadth-first

● How do we calculate accumulated latencies? --- Use data flow 

equations
○ GEN[ I ] = getLatency(I) 

○ IN[ I ] = OUT[ P ] 

○ OUT[ I ] = IN[ P ] + GEN[ I ]



Function ‘foo’

CFG for ‘foo’ --- bitcode

%2 3 - 3

%3 3 3 6

store ... 5 6 11

%4 5 11 16

%5 4 16 20

store ... 5 20 25

%6 5 25 30

ret 2 30 32

GEN[I] IN[I] OUT[I]



Mechanics: Expected and maximum “settings”

● Important case to handle --- branching
○ Analyze by basic blocks

● First instruction of a block may have many predecessors
○ What’s the IN set of that instruction?



Mechanics: Expected and maximum “settings”

● Important case to handle --- branching
○ Analyze by basic blocks

● First instruction of a block may have many predecessors
○ What’s the IN set of that instruction?

● Transform introduces two approaches:

○ Expected latency --- IN[ I ] = OUT[ Pk ] ⋅ Pr[ Pk ] ; ∀ k, (k ∈ P)

○ Maximum latency --- IN[ I ] = max { OUT[ Pk ] } ; ∀ k, (k ∈ P)



Mechanics: Expected and maximum “settings”

● Important case to handle --- branching
○ Analyze by basic blocks

● First instruction of a block may have many predecessors
○ What’s the IN set of that instruction?

● Transform introduces two approaches:

○ Expected latency (assuming no branch weights) --- 

IN[ I ] = (Σ OUT[ Pk ]) / |P| ; ∀ k, (k ∈ P)

○ Maximum latency --- IN[ I ] = max { OUT[ Pk ] } ; ∀ k, (k ∈ P)



Function ‘foo’ CFG for ‘foo’ --- bitcode

Accumulated latencies:
- [ br label %10 ] .%4 = 20
- [ br label %10 ] .%6 = 42

Expected: (20 + 42) / 2 = 31 cycles

Maximum: max {20, 42} = 42 cycles



Mechanics: Why have two “settings”?

● Analyzing by expected latency:
○ Broad estimate of latency given all predecessors of a block

○ Less likely to induce ‘conflicts’ 

○ More likely to ‘miss’ deadline



Mechanics: Why have two “settings”?

● Analyzing by expected latency:
○ Broad estimate of latency given all predecessors of a block

○ Less likely to induce ‘conflicts’ 

○ More likely to ‘miss’ deadline

● Analyzing by maximum latency:
○ Worst case latency given the predecessors of a block

○ Calculate worst case ‘latency size’ of a function

○ Likelier to inject calls to nk_fiber_yield on each code path

○ Incur overhead from ‘conflicts’



Mechanics: Loop “extension” policy

● Important case to handle --- back edges

● Analyzing predecessors for loops is difficult 

● Possible solution --- “extend” the loop first
○ Calculate loop “latency size,” unroll to a multiple of the 

granularity

○ Ignore the back edge 



Function ‘bar’

CFG for ‘bar’ --- bitcode



CFG for ‘bar’ --- bitcode Adjusted CFG for ‘bar’ --- bitcode
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Mechanics: Determining injection locations

● Iterate over CFG --- traversing same as DFA (breadth-first)
○ Analyze each code path (no back edges)

● Mark instructions that reach the granularity/deadline
○ Reset a variable in the transform 

○ Continue iterating until an instruction passes the deadline again

● Inject a call instruction to nk_fiber_yield before marked 

instructions



Function ‘foo’ CFG for ‘foo’ --- bitcode
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Function ‘foo’ CFG for ‘foo’ --- bitcode
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Mechanics: High and low “settings”

● Issue of multiple predecessors (again):
○ Which “last reset point” do we choose?

○ A second layer of “settings” --- conservativeness

● High conservativeness:

○ Min { k } ; ∀ k, (k ∈ [Incoming reset points])

● Low conservativeness:

○ Max { k } ; ∀ k, (k ∈ [Incoming reset points])



Function ‘foo’ CFG for ‘foo’ --- bitcode --- Expected measurements
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Function ‘foo’ CFG for ‘foo’ --- bitcode --- Expected measurements
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42 

31 + 5Last injection location’s latency: 30
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Function ‘foo’

22 
42 

42 + 5

CFG for ‘foo’ --- bitcode --- Maximum measurements

30 
24

Last injection location’s latency:
- [ br label %10 ] .%4 = 0
- [ br label %10 ] .%6 = 30



Mechanics: Why have two “settings” (again)?

Interval between yield calls (cycles)
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Mechanics: Why have two “settings” (again)?
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Preliminary results: Goals
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Preliminary results: Testing environment

● Transform written using LLVM

● Testing conducted with Nautilus Aerokernel on Peroni/Zythos 

cluster

● Nautilus compiled with Clang 8.0, under O2

● Nautilus run with QEMU:
○ Enabled KVM --- more accurate results

○ Enabled instruction sets through AVX2



Preliminary results: Methodology

● Determining latency measurements:
○ Based on data of instruction latencies --- bitcode level

○ CMU data set, ~10 years old

● Measured time intervals between calls to nk_fiber_yield
○ Timing measured in cycle counts 

○ Cycle counts collected via rdtsc (built into Nautilus)



Preliminary results: Methodology

● Benchmarks written as fibers
○ Two fibers yielding back and forth

○ Each fiber has relatively equal execution time

● Benchmarks include --- simple algorithms, pointer indirection, 

floating point operations, nested loop structures 

● Each benchmark executed 10 times, outliers discarded



Preliminary results: Current constraints

● CMU data set --- for instruction latencies:
○ Out of date, inaccurate

○ Incomplete --- many LLVM bitcode instructions unhandled

● Intraprocedural

● Loop “extension” based on estimates of loop “latency size”

● QEMU not entirely accurate



Preliminary results: Benchmark --- FP Operations



Preliminary results: Benchmark --- FP Operations



Preliminary results: Benchmark --- BST Lookup

G = 200



Preliminary results: Benchmark --- BST Lookup

G = 1000



Preliminary results: Benchmark --- BST Lookup



Preliminary results: Benchmark --- LO Tree Traversal



Preliminary results: Benchmark --- LO Tree Traversal

G = 200



Preliminary results: Benchmark --- LO Tree Traversal

G = 1000



Preliminary results: Benchmark --- Matrix Multiply
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- Intraprocedural

- CMU data set

- Loop “extension” 

Further research: Improving on constraints

- LLVM profilers

- Better estimation

- Interprocedural

- QEMU / KVM
- Hard metal, testing 

between settings



Further research: Expanding compiler-based timing

● Refactor the transform --- especially loop transformations

● Achieve timing guarantees at a finer granularity than standard 

timer interrupts --- without misses 

● Widely integrate into Nautilus (not just fibers)

● Broader goal --- testing compiler-based timing with robust 

benchmark suites


