
Compiler-Based Timing in
Nautilus (and Elsewhere)

Souradip Ghosh

Agenda

1.Background

2.Motivation

3.Scope: Fibers in NK

4.Compiler-based approach

5.Mechanics of the timing transform

6.Preliminary results

7.Further research

Background: Preemptive multitasking

● Preemption:
○ Yielding control is involuntary --- triggered by hardware or

software housed in the kernel

○ Context-switching between processes/threads

○ Scheduler decides which process/thread to switch to

● Provides a degree of fairness, completing I/O, important for

real time systems

Background: Interrupts

● Timer interrupts are the main tool for starting context-switches

Time

Thread A

In
te

rr
up

t

Interrupt
Handler

Thread B

SchedulerInterrupt
Latency

Sa
ve

st

at
e

(A
)

Re
st

or
e

st
at

e
(B

)

Background: Cooperative multitasking

● Alternative to preemption

● Yielding control is voluntary --- the cooperative task decides

when to yield control of the CPU

● Simplifies context-switching and scheduling

● Michael’s fibers implementation in Nautilus

Agenda

1.Background

2.Motivation

3.Scope: Fibers in NK

4.Compiler-based approach

5.Mechanics of the timing transform

6.Preliminary results

7.Further research

Motivation: Preemption overheads

● Large overheads in saving/restoring state, interrupt processing

Time

Thread A

In
te

rr
up

t

Interrupt
Handler

Thread B

SchedulerInterrupt
Latency

Sa
ve

st

at
e

(A
)

Re
st

or
e

st
at

e
(B

)

Motivation: Finer granularity and parallelism

● Granularity --- ‘execution’ intervals for a thread/process

● Finer granularity → maximizes parallelism1

○ Works for thread/process-parallel written code

○ Facilitates load balancing across processors

● Given large context switch overhead:
○ Finer granularity not efficient

○ Interrupt-driven timing guarantees bottom out at 100 mHz

● Finer granularity easier with smaller context-switch overheads
1 Moreira et al., The Performance Impact of Granularity Control and Functional Parallelism (2005). https://bit.ly/2k7frdQ

https://bit.ly/2k7frdQ

Motivation: Cooperating is difficult

● For developers --- programming headaches when deciding to

yield control

● Inaccuracies in yielding are not practical for certain systems

(real time systems)

● Easy scenarios for starving processes/threads, unfairness

● There’s no concept of timing guarantees

Motivation

Can we achieve a system that simplifies context-switching (to

the extent seen cooperative multitasking) while maintaining

timing guarantees (seen with preemption)?

Agenda

1.Background

2.Motivation

3.Scope: Fibers in NK

4.Compiler-based approach

5.Mechanics of the timing transform

6.Preliminary results

7.Further research

Scope: Fibers in NK

● Fibers in NK designed with cooperative

multitasking in mind:
○ No use of interrupts

○ Faster context-switches

○ Simplified scheduler

● The developer chooses when to yield (nk_fiber_yield)

● Current research focused on Michael’s fibers implementation

Scope: Fibers in NK --- Simplified approach

● Michael’s work --- fibers have lightweight context-switches

Time

Fiber A

Interrupt
Handler

Fiber B

Simplified
Scheduler

Sa
ve

st

at
e

(A
)

Re
st

or
e

st
at

e
(B

)

Interrupt
Latency

In
te

rr
up

t

Scope: Fibers in NK --- Rethinking the question

Can we reintroduce timing guarantees for the fibers

implementation in Nautilus?

Agenda

1.Background

2.Motivation

3.Scope: Fibers in NK

4.Compiler-based approach

5.Mechanics of the timing transform

6.Preliminary results

7.Further research

Compiler-based approach: Measuring time

● Determine execution “time” for all code paths at compile-time

● Fibers --- the compiler injects calls to nk_fiber_yield for a

specified granularity

Applications

Kernel

CPU Mem. Dev.

Compiler

Agenda

1.Background

2.Motivation

3.Scope: Fibers in NK

4.Compiler-based approach

5.Mechanics of the timing transform

6.Preliminary results

7.Further research

Mechanics: Instruction latency

● Timing transform analyzes instruction latencies at the bitcode

level (middle-end)
○ Sequential analysis --- in order of a routine’s CFG

● Instruction latency --- Time (clock cycles) before the

data/output from an instruction is available to the module

Mechanics: Simplified DFA

● Data flow analysis --- calculates accumulated latency up until a

certain bitcode instruction

○ Utilizes function’s CFG

○ Iterate CFG breadth-first

Mechanics: Simplified DFA

● Data flow analysis --- calculates accumulated latency up until a

certain bitcode instruction

○ Utilizes function’s CFG

○ Iterate CFG breadth-first

● How do we calculate accumulated latencies? --- Use data flow

equations
○ GEN[I] = getLatency(I)

○ IN[I] = OUT[P]

○ OUT[I] = IN[P] + GEN[I]

Function ‘foo’

CFG for ‘foo’ --- bitcode

%2 3 - 3

%3 3 3 6

store ... 5 6 11

%4 5 11 16

%5 4 16 20

store ... 5 20 25

%6 5 25 30

ret 2 30 32

GEN[I] IN[I] OUT[I]

Mechanics: Expected and maximum “settings”

● Important case to handle --- branching
○ Analyze by basic blocks

● First instruction of a block may have many predecessors
○ What’s the IN set of that instruction?

Mechanics: Expected and maximum “settings”

● Important case to handle --- branching
○ Analyze by basic blocks

● First instruction of a block may have many predecessors
○ What’s the IN set of that instruction?

● Transform introduces two approaches:

○ Expected latency --- IN[I] = OUT[Pk] ⋅ Pr[Pk] ; ∀ k, (k ∈ P)

○ Maximum latency --- IN[I] = max { OUT[Pk] } ; ∀ k, (k ∈ P)

Mechanics: Expected and maximum “settings”

● Important case to handle --- branching
○ Analyze by basic blocks

● First instruction of a block may have many predecessors
○ What’s the IN set of that instruction?

● Transform introduces two approaches:

○ Expected latency (assuming no branch weights) ---

IN[I] = (Σ OUT[Pk]) / |P| ; ∀ k, (k ∈ P)

○ Maximum latency --- IN[I] = max { OUT[Pk] } ; ∀ k, (k ∈ P)

Function ‘foo’ CFG for ‘foo’ --- bitcode

Accumulated latencies:
- [br label %10] .%4 = 20
- [br label %10] .%6 = 42

Expected: (20 + 42) / 2 = 31 cycles

Maximum: max {20, 42} = 42 cycles

Mechanics: Why have two “settings”?

● Analyzing by expected latency:
○ Broad estimate of latency given all predecessors of a block

○ Less likely to induce ‘conflicts’

○ More likely to ‘miss’ deadline

Mechanics: Why have two “settings”?

● Analyzing by expected latency:
○ Broad estimate of latency given all predecessors of a block

○ Less likely to induce ‘conflicts’

○ More likely to ‘miss’ deadline

● Analyzing by maximum latency:
○ Worst case latency given the predecessors of a block

○ Calculate worst case ‘latency size’ of a function

○ Likelier to inject calls to nk_fiber_yield on each code path

○ Incur overhead from ‘conflicts’

Mechanics: Loop “extension” policy

● Important case to handle --- back edges

● Analyzing predecessors for loops is difficult

● Possible solution --- “extend” the loop first
○ Calculate loop “latency size,” unroll to a multiple of the

granularity

○ Ignore the back edge

Function ‘bar’

CFG for ‘bar’ --- bitcode

CFG for ‘bar’ --- bitcode Adjusted CFG for ‘bar’ --- bitcode

0

40

0

200

Mechanics: Determining injection locations

● Iterate over CFG --- traversing same as DFA (breadth-first)
○ Analyze each code path (no back edges)

● Mark instructions that reach the granularity/deadline
○ Reset a variable in the transform

○ Continue iterating until an instruction passes the deadline again

● Inject a call instruction to nk_fiber_yield before marked

instructions

Function ‘foo’ CFG for ‘foo’ --- bitcode

3

6

11

16

20

25

30

32

Last injection location’s latency: 0

Function ‘foo’ CFG for ‘foo’ --- bitcode

3

6

11

16

20

25

30

32

Last injection location’s latency: 11

Function ‘foo’ CFG for ‘foo’ --- bitcode

3

6

11

16

20

25

30

32

Last injection location’s latency: 25

Mechanics: High and low “settings”

● Issue of multiple predecessors (again):
○ Which “last reset point” do we choose?

○ A second layer of “settings” --- conservativeness

● High conservativeness:

○ Min { k } ; ∀ k, (k ∈ [Incoming reset points])

● Low conservativeness:

○ Max { k } ; ∀ k, (k ∈ [Incoming reset points])

Function ‘foo’ CFG for ‘foo’ --- bitcode --- Expected measurements

22
42

31 + 5Last injection location’s latency:
- [br label %10] .%4 = 0
- [br label %10] .%6 = 30

30
24

Function ‘foo’ CFG for ‘foo’ --- bitcode --- Expected measurements

22
42

31 + 5Last injection location’s latency: 36

30
24

Function ‘foo’ CFG for ‘foo’ --- bitcode --- Expected measurements

22
42

31 + 5Last injection location’s latency: 30

30
24

Function ‘foo’

22
42

42 + 5

CFG for ‘foo’ --- bitcode --- Maximum measurements

30
24

Last injection location’s latency:
- [br label %10] .%4 = 0
- [br label %10] .%6 = 30

Mechanics: Why have two “settings” (again)?

Interval between yield calls (cycles)

G

Fr
eq

u
en

cy

Expected (DFA), High (Con.)

Interval between yield calls (cycles)

G

Fr
eq

u
en

cy

Expected (DFA), Low (Con.)

Mechanics: Why have two “settings” (again)?

Interval between yield calls (cycles)

G

Fr
eq

u
en

cy

Maximum (DFA), High (Con.)

Interval between yield calls (cycles)

G

Fr
eq

u
en

cy

Maximum (DFA), Low (Con.)

Agenda

1.Background

2.Motivation

3.Use case: Fibers in NK

4.Mechanics of the timing transform

5.Preliminary results

6.Further research

Preliminary results: Goals

Preliminary results: Goals

Preliminary results: Goals

Preliminary results: Testing environment

● Transform written using LLVM

● Testing conducted with Nautilus Aerokernel on Peroni/Zythos

cluster

● Nautilus compiled with Clang 8.0, under O2

● Nautilus run with QEMU:
○ Enabled KVM --- more accurate results

○ Enabled instruction sets through AVX2

Preliminary results: Methodology

● Determining latency measurements:
○ Based on data of instruction latencies --- bitcode level

○ CMU data set, ~10 years old

● Measured time intervals between calls to nk_fiber_yield
○ Timing measured in cycle counts

○ Cycle counts collected via rdtsc (built into Nautilus)

Preliminary results: Methodology

● Benchmarks written as fibers
○ Two fibers yielding back and forth

○ Each fiber has relatively equal execution time

● Benchmarks include --- simple algorithms, pointer indirection,

floating point operations, nested loop structures

● Each benchmark executed 10 times, outliers discarded

Preliminary results: Current constraints

● CMU data set --- for instruction latencies:
○ Out of date, inaccurate

○ Incomplete --- many LLVM bitcode instructions unhandled

● Intraprocedural

● Loop “extension” based on estimates of loop “latency size”

● QEMU not entirely accurate

Preliminary results: Benchmark --- FP Operations

Preliminary results: Benchmark --- FP Operations

Preliminary results: Benchmark --- BST Lookup

G = 200

Preliminary results: Benchmark --- BST Lookup

G = 1000

Preliminary results: Benchmark --- BST Lookup

Preliminary results: Benchmark --- LO Tree Traversal

Preliminary results: Benchmark --- LO Tree Traversal

G = 200

Preliminary results: Benchmark --- LO Tree Traversal

G = 1000

Preliminary results: Benchmark --- Matrix Multiply

Agenda

1.Background

2.Motivation

3.Use case: Fibers in NK

4.Mechanics of the timing transform

5.Preliminary results

6.Further research

- Intraprocedural

- CMU data set

- Loop “extension”

Further research: Improving on constraints

- LLVM profilers

- Better estimation

- Interprocedural

- QEMU / KVM
- Hard metal, testing

between settings

Further research: Expanding compiler-based timing

● Refactor the transform --- especially loop transformations

● Achieve timing guarantees at a finer granularity than standard

timer interrupts --- without misses

● Widely integrate into Nautilus (not just fibers)

● Broader goal --- testing compiler-based timing with robust

benchmark suites

