
RipTide: A Programmable,
Energy-Minimal Dataflow
Compiler and Architecture
Graham Gobieski, Souradip Ghosh, Marjin Heule, Todd C.
Mowry, Tony Nowatzki*, Nathan Beckmann, Brandon Lucia

Carnegie Mellon University, *UCLA
SRC Task (3019.001)

Outline

1) Motivation
2) Background

a) Coarse-grained reconfigurable arrays (CGRAs)
b) Prior work

3) RipTide
a) Overview à Compiler and architecture
b) Memory ordering
c) Mapping
d) Results

2

Motivation: Sensors at the extreme edge

Smart sensor devices at the extreme edge are quickly emerging.
Devices need to run complex apps à inference, DSP, and more.

Trillions of devices1 coming

3

Medical
Wearables

Wildlife
Monitoring

Nano
Satellites

1Arm, “How to build a trillion connected things.”

Motivation: Computing at the extreme edge?

Compute must be efficient and sustainable at the extreme edge.

1. Run variety of
apps on ultra low
power (ULP), µWs

2. More compute
on-device, less
communication2

Multi-year sensor
deployment

2Gobieski et al., “Intelligence Beyond the Edge: Inference on Intermittent Embedded Systems.” (ASPLOS ‘19).

Background: Comparing existing architectures

Devices must have architectures that are flexible and efficient.

Energy efficiency

Fl
ex

ib
ili

ty

CPU CGRA

1.

2. a

ASIC
2. Inflexible by design,
limited to single app

1. Wastes up to 90%
energy on non-compute3

3Horowitz, “Computing’s energy problem (and what we can do about it).” (ISSCC ’14).

CGRAs: What is a CGRA?

Coarse-grained configurable arrays:
Grid of processing elements (PE, to execute
ops) connected by a NoC (to send values).

Eliminates fetch/decode & reg. file usage!

CGRAs: An end-to-end pipeline

x: add ...
y: add ...
z: mul x,y r

r

r rr

r

r

r r

r

r rr

r

r

r

r+
+

*

1. Extract a dataflow
graph (DFG) from
code, optimize

3. Execute ops w/
“dataflow firing” or
a static schedule

Compiler Mapper

2. Map ops to a
PE mix and links
on the NoC

Prior Work: Prior ULP CGRAs are limited

void foo (...) {
for (i = 0..n) {
vlh v1, a + i
vadd v3, v1, v2
vsh b + i, v3

}
}

Runs only affine inner loops.

No complex control-flow,
irregular memory accesses, or
operation ordering.CGRA code in assembly4

4Gobieski et al., “SNAFU: An Ultra-Low-Power, Energy-Minimal CGRA-Generation Framework and Architecture.” (ISCA ‘21).

Insight: To improve efficiency,
CGRAs need to run entire apps
& support common PL idioms

RipTide: Overview

Ld St

Ou
te
r

In
ne
r

#riptide void foo
(int * restrict a, b) {
while (!q.empty()) {

for (i in 0..q.pop())
if (b[a[i]]) ...

}
}

C code (lightly annotated)

M

R R

RR

St

R R

RR

A

R R

RR

M

R R

RR

DFG

Handles arbitrary code via
1) Complex control-flow
2) Irregular mem. access
3) Operation ordering

Generated CGRA

Reuses routers to
run control-flow.
Frees PEs for ops.Optimizes DFG,

fuses subgraphs

Mapper

Compiler

RipTide: Memory ordering

Ld

St

St

a) Build an
ordering graph
for mem. deps

b) Prune already-
enforced arcs via
existing data and
control deps

Ld

St

St

c) Perform a path-
sensitive transitive
reduction

Ld

St

St

d) Remaining
ordering arcs
are enforced.

Ld

St

St

RipTide: Mapping

RipTide formulates PE/link place
& route as SAT or ILP problems.

RipTide also only maps spatially
(no static execution schedule).

Adequate soln.
Quickly solves.

Better soln.
Slowly solves.

SAT:

ILP:

RipTide: Results

6.6x
better

Programmability Energy-Efficiency Performance

6.2x
better

+ Full RTL design
and synthesized

10 apps from
linalg, graph
processing, and
signal processing

+ Ran an entire
DNN on RipTide!

+ Full compiler
built with LLVM

Thank you!
Correspondence:
• Souradip Ghosh (souradip@cmu.edu)

• Graham Gobieski (gobieski@cmu.edu)

For more details, visit:
• Abstract Group (abstract.ece.cmu.edu)

• CORGi Group (cmu-corgi.github.io)

mailto:souradip@cmu.edu
mailto:gobieski@cmu.edu
http://abstract.ece.cmu.edu/
https://cmu-corgi.github.io/

