RipTide: A Programmable, Energy-Minimal Dataflow Compiler and Architecture

Graham Gobieski, Souradip Ghosh, Marijn Heule, Todd C. Mowry, Tony Nowatzki*, Nathan Beckmann, Brandon Lucia Carnegie Mellon University, *UCLA | (SRC Task 3019.001)

Smart sensor devices at the extreme edge are emerging with huge industrial impact

Trillions of devices¹ + **sophisticated** apps

Must sustainably & efficiently **compute** at the edge. <u>How</u>?

1. Run apps on **ultra** *low power* (*ULP*), μWs

2. More compute on-device, less communication²

deployment

Goal: build a highly flexible & energy efficient compute

Prior ULP CGRAs are limited

void foo (...): for (i = 0...n): vlh v1, a + i**vadd** v3, v1, v2 vsh b + i, v3

¹Arm, "How to build a trillion connected things." ²Gobieski et al., "Intelligence Beyond the Edge: Inference on Intermittent Embedded Systems." (ASPLOS '19).`

³Horowitz, "Computing's energy problem (and what we can do about it)." (ISSCC '14).

Coarse-grained reconfigurable arrays are flexible & efficient!

Grid of processing elements (**PE**) connected by a **NoC**. *Eliminates* fetch/decode & reg. file usage!

1. Extract a *dataflow* graph from code

2. Map ops to a PE mix and links on the NoC

3. Execute ops w/ "dataflow firing" or a static schedule

Runs only affine inner **loops.** No irregularity or operation ordering.

CGRA code in assembly⁴

Insight: To improve efficiency, **CGRAs need to run entire apps** & support common PL idioms

