RipTide: A Programmable, Energy-Minimal Dataflow Compiler and Architecture

Graham Gobieski, Souradip Ghosh, Marijn Heule, Todd C. Mowry, Tony Nowatzki*, Nathan Beckmann, Brandon Lucia
Carnegie Mellon University, *UCLA | (SRC Task 3019.001)

at the
are emerging
with huge industrial impact

= a
D
ad
2) ++ T
Nano Medical Wildlife
Satellites Wearables Monitoring

Trillions of devices' + sophisticated apps

Must sustainably & efficiently
compute at the edge. How?

g NN NN S S S - - - -y,

-8

Multi-year sensor
deployment

1. Run apps on ultra
low power (ULP), uWs

2. More compute
on-device, less
communication? \

Goal: build a highly flexible
& energy efficient compute

T * 1. Wastes up to
N3V E cera J 90% energy on
=1 non-compute3
Q
% ASIC —----mmmmmmmm -
- H@: _—» 2.Limited to

single app

Energy efficiency

1Arm, “How to build a trillion connected things.”

2Gobieski et al., “Intelligence Beyond the Edge: Inference on Intermittent Embedded Systems.” (ASPLOS ‘19).’

Coarse-grained reconfigurable
arrays are flexible & efficient!

——— Grid of processing elements
[(PE) connected by a NoC.
: Eliminates fetch/decode
& reg. file usage!
4)
: add ...
; 2dd . 1. Extract a dataflow
2: mul x,v) " graph from code
‘Compiler‘

2. Map opsto a
, PE mix and links
" onthe NoC

3. Execute ops w/
* “dataflow firing"” or

a static schedule

for (i = 0..n):
vlh vl, a + i
vadd v3, vl, v2
vsh b + 1, v3

CGRA code in assembly?

Runs only affine inner
loops. No irregularity
or operation ordering.

Insight: To improve efficiency,

CGRAs need to run entire apps

& support common PL idioms

RipTide is a new ULP CGRA compiler & arch.
C code (lightly annotated) | DFG Generated CGRA

#riptide void foo & g—h h J—h
: S 4 R R R
(int * a, b) { O - 7

while (!q.empty()) {
A M

for (i in 0..q.pop()) 1} -
if (b[a[i]]) ... Compiler R R R

} L .

2
} \§_ r M St 1
Handles arbitrary code via G : /LRJ

1) Complex control-flow
2) Irregular mem. access
3) Operation ordering

Reuses routers to
run control-flow.
Frees PEs for ops.

Optimizes DFG,
fuses subgraphs

Memory ordering: c)Perform a path- Mapping DFGs to the CGRA:
. sensitive transitive | ,
a) Build an (st) reduction . RipTide formulates PE/link place

ordering graph @

- & route as SAT or ILP problems.
for mem. deps @ :

soln.
Quickly solves.

SAT:

b) Prune arcs via @
existing data and @

control deps

x
d) Remaining
ordering arcs
are enforced.

ILP: DBettersoln.
Slowly solves.

Programmability Energy-Efficiency Performance 10 apps from
linalg, graph
C-code BN Assembly —~ 9, 9 p
2 6- 6.6x —6- 6.2x processing, and
2 better R better signal processing
9 40 - > Y, B [
S ‘é},‘l‘ sS40 + Full compiler
° > S built with LLVM
o 20 - » T | L B OB
k= >, O 2- :
— 20 = + Full RTL design
q) ----- (]
I and synthesized
0 - ol W W W
— — D) D) L o
73 S ?{ = L = +Ranan entire
V) ° o
»w > z g Z = DNN on RipTide!

4Gobieski et al., “SNAFU: An Ultra-Low-Power, Energy-Minimal
CGRA-Generation Framework and Architecture.” (ISCA ‘21).

