
RipTide: A Programmable, Energy-Minimal Dataflow Compiler and Architecture
Graham Gobieski, Souradip Ghosh, Marijn Heule, Todd C. Mowry, Tony Nowatzki*, Nathan Beckmann, Brandon Lucia

Carnegie Mellon University, *UCLA | (SRC Task 3019.001)

Must sustainably & efficiently
compute at the edge. How?
1. Run apps on ultra

low power (ULP), µWs

Smart sensor devices at the
extreme edge are emerging
with huge industrial impact

2. More compute
on-device, less
communication2

Multi-year sensor
deployment

Coarse-grained reconfigurable
arrays are flexible & efficient!

Grid of processing elements
(PE) connected by a NoC.

x: add ...
y: add ...
z: mul x,y

r

r

r rr

r

r

r r

r

r rr

r

r

r

r

+
+

*

1. Extract a dataflow
graph from code

3. Execute ops w/
“dataflow firing” or
a static schedule

1Arm, “How to build a trillion connected things.”
2Gobieski et al., “Intelligence Beyond the Edge: Inference on Intermittent Embedded Systems.” (ASPLOS ‘19).` 3Horowitz, “Computing’s energy problem (and what we can do about it).” (ISSCC ’14).

4Gobieski et al., “SNAFU: An Ultra-Low-Power, Energy-Minimal
CGRA-Generation Framework and Architecture.” (ISCA ‘21).

RipTide is a new ULP CGRA compiler & arch.

Ld St

Ou
te
r

In
ne
r

#riptide void foo
(int * restrict a, b) {
while (!q.empty()) {

for (i in 0..q.pop())
if (b[a[i]]) ...

}
}

C code (lightly annotated)

M
R R

RR

St
R R

RR

A
R R

RR

M
R R

RR

DFG

Handles arbitrary code via
1) Complex control-flow
2) Irregular mem. access
3) Operation ordering

6.6x
better

Programmability Energy-Efficiency Performance

6.2x
better

Generated CGRA

Reuses routers to
run control-flow.
Frees PEs for ops.

Optimizes DFG,
fuses subgraphs

Trillions of devices1 + sophisticated apps

Medical
Wearables

Wildlife
Monitoring

Nano
Satellites

Goal: build a highly flexible
& energy efficient compute

Energy efficiency

Fl
ex

ib
ili

ty

CPU CGRA

1.

2. a

ASIC

2. Limited to
single app

1. Wastes up to
90% energy on
non-compute3

void foo (...):
for (i = 0..n):
vlh v1, a + i
vadd v3, v1, v2
vsh b + i, v3

Prior ULP CGRAs are limited

Runs only affine inner
loops. No irregularity
or operation ordering.

CGRA code in assembly4

Insight: To improve efficiency,
CGRAs need to run entire apps
& support common PL idioms

Memory ordering:

RipTide formulates PE/link place
& route as SAT or ILP problems.

Mapper
Compiler

+ Full RTL design
and synthesized

10 apps from
linalg, graph
processing, and
signal processing

+ Ran an entire
DNN on RipTide!

+ Full compiler
built with LLVM

Mapping DFGs to the CGRA:

Ld

St

St

a) Build an
ordering graph
for mem. deps

b) Prune arcs via
existing data and
control deps

Ld

St

St

c) Perform a path-
sensitive transitive
reduction

Ld

St

St

d) Remaining
ordering arcs
are enforced.

Compiler

Mapper

Eliminates fetch/decode
& reg. file usage!

2. Map ops to a
PE mix and links
on the NoC

Adequate soln.
Quickly solves.
Better soln.
Slowly solves.

SAT:

ILP:

