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Trillions of devices' + sophisticated apps

Must sustainably & efficiently
compute at the edge. How?
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Multi-year sensor
deployment

1. Run apps on ultra
low power (ULP), uWs

2. More compute
on-device, less
communication? \

Goal: build a highly flexible
& energy efficient compute
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Energy efficiency

1Arm, “How to build a trillion connected things.”

2Gobieski et al., “Intelligence Beyond the Edge: Inference on Intermittent Embedded Systems.” (ASPLOS ‘19).’

Coarse-grained reconfigurable
arrays are flexible & efficient!

——— Grid of processing elements
[ (PE) connected by a NoC.
: Eliminates fetch/decode
& reg. file usage!
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‘Compiler‘

2. Map opsto a
, PE mix and links
" onthe NoC

3. Execute ops w/
* “dataflow firing"” or

a static schedule

for (i = 0..n):
vlh vl, a + i
vadd v3, vl, v2
vsh b + 1, v3

CGRA code in assembly?

Runs only affine inner
loops. No irregularity
or operation ordering.

Insight: To improve efficiency,

CGRAs need to run entire apps

& support common PL idioms

RipTide is a new ULP CGRA compiler & arch.
C code (lightly annotated) | DFG Generated CGRA
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while (!q.empty()) {
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Handles arbitrary code via G : /LRJ

1) Complex control-flow
2) Irregular mem. access
3) Operation ordering

Reuses routers to
run control-flow.
Frees PEs for ops.

Optimizes DFG,
fuses subgraphs

Memory ordering: c)Perform a path- Mapping DFGs to the CGRA:
. sensitive transitive | ,
a) Build an (st) reduction . RipTide formulates PE/link place

ordering graph @

- & route as SAT or ILP problems.
for mem. deps @ :

soln.
Quickly solves.

SAT:

b) Prune arcs via @
existing data and @

control deps

x
d) Remaining
ordering arcs
are enforced.

ILP: DBettersoln.
Slowly solves.
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4Gobieski et al., “SNAFU: An Ultra-Low-Power, Energy-Minimal
CGRA-Generation Framework and Architecture.” (ISCA ‘21).




