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Spatial dataflow architectures (SDAs) are a promising and versatile accelerator platform. They are software-
programmable and achieve near-ASIC performance and energy efficiency, beating CPUs by orders of magnitude.
Unfortunately, many SDAs struggle to efficiently implement irregular computations because they suffer from
an abstraction inversion: they fail to capture coarse-grain dataflow semantics in the application — namely
asynchronous communication, pipelining, and queueing — that are naturally supported by the dataflow
execution model and existing SDA hardware.

RIPPLE is a language and architecture that corrects the abstraction inversion by preserving dataflow semantics
down the stack. RIPPLE provides asynchronous iterators, shared-memory atomics, and a familiar task-parallel
interface to concisely express the asynchronous pipeline parallelism enabled by an SDA. RIPPLE efficiently
implements deadlock-free, asynchronous task communication by exposing hardware token queues in its ISA.
Across nine important workloads, compared to a recent ordered-dataflow SDA, RIPPLE shrinks programs by
1.9×, improves performance by 3×, increases IPC by 58%, and reduces dynamic instructions by 44%.
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1 Introduction

Over the last decade, computing has turned to specialized architectures to scale performance
and efficiency, from low-power sensing [32] to datacenter-scale machine learning [39, 66].

Fixed-function accelerators are fast and efficient, but workload diversity and non-recurring engi-
neering costs precludes using a custom ASIC for every application [43].

Spatial dataflow architectures (SDAs) are a flexible, efficient alternative to specialized hardware
accelerators [23, 32–35, 41, 54, 55, 58–61, 63, 67, 69, 71–73, 76, 81, 83–85, 87, 90]. An SDA and
its compiler represents a program as a dataflow graph (DFG). The DFG’s nodes are instructions,
and its directed edges explicitly encode communication between instructions. There is no global
instruction order (i.e., program counter) in the dataflow execution model. Instead, the dataflow
firing rule governs execution: an instruction fires whenever its inputs are ready [27]. Upon firing,
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an instruction typically generates a data token for dependent instructions that is sent through a
token queue. The compiler maps the DFG onto the SDA’s array of processing elements (PEs), or
fabric, by placing instructions onto PEs and routing communication over a network on-chip (NoC).
Token queues are routinely implemented in hardware as self-managing FIFOs, which buffer data
tokens at PEs. Fig. 1 shows an SDA fabric and a small slice of the core SDA components: a single
PE, the NoC, and hardware queues for input tokens.

SDA Fabric
PE R

Processing 
Element= = Router

Fig. 1. Typical SDA fabric. Spatially distributed PEs execute
instructions and communicate tokens over the NoC (via links
and routers). Tokens are buffered at hardware queues.

Spatial distribution of compute and
communication is key to an SDA’s per-
formance and efficiency. Spatial distribu-
tion exposes ample instruction-level par-
allelism (ILP), while dramatically reduc-
ing the switching activity of an SDA’s
PEs vs. a CPU [32, 76]. However, spatial
distribution makes SDAs highly sensitive
to program size because a DFG must fit
onto an SDA to realize these advantages.
A larger program requires more PEs and
bigger NoC, which increases area and
power. A larger program also often ex-
ecutes more instructions, wasting energy.
Moreover, depending on fabric size, placing and routing a large program can take hours [7, 33, 62].

Prior work has mainly focused on regular, affine loops, where dataflow compilers easily extract
feed-forward DFGs from simple code regions (e.g., a dot product). These DFGs contain plentiful ILP
and pipeline parallelism for SDAs to exploit [32, 41, 60, 67, 77, 84]; however, this approach neglects
irregular code [23, 55, 69, 83]. Irregularity increases DFG size and reduces parallelism due to extra
instructions for memory ordering and data-dependent control [33, 37, 64, 76].
Why do SDAs struggle on irregular applications?Many irregular programs feature regions of
computation that execute and communicate data to other regions asynchronously. An SDA executes
programs similarly: PEs fire asynchronously and hardware queues convey values from producers
to consumers. These irregular algorithms and an SDA’s execution model both express task-level or
coarse-grain dataflow parallelism. SDAs should be well-suited to accelerate these workloads.

Unfortunately, existing SDAs commonly extract DFGs from sequential [8, 14, 23, 33–35, 41, 54, 55,
60, 71, 76, 81, 82, 87] or data-parallel [44, 73, 77, 84, 85] code that lack explicit primitives for dataflow
parallelism. Instead, the programmer must express coarse-grain communication explicitly in code.
The resulting DFG implements asynchronous communication via several control and memory
instructions. Whereas, if only dataflow behavior had survived compilation, communication could
map directly onto hardware token queues. The mismatch between high-level dataflow semantics
and the low-level compiled code is an abstraction inversion that (i) increases program size and
(ii) requires conservative serialization of memory operations.

Programming languages targeting SDAs should explicitly expose asynchrony and queue-
ing, enabling the compiler to map dataflow operations directly to their corresponding
hardware primitives. We introduce Ripple, a language and spatial dataflow architecture, which
combines an asynchronous dataflow programming model with simple ISA extensions to eliminate
the abstraction inversion. RIPPLE programs are composed of asynchronously communicating tasks
written using asynchronous iterators that define queueing and pipelining semantics for tasks and
their inputs. RIPPLE allows arbitrary structure, from feed-forward pipelines to feedback loops of
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(a) RIPTIDE.

(b) Ripple.

Fig. 2. DFGs of breadth-first search (bfs) for Riptide and RIPPLE. (a) Riptide compiles C, requiring heavy
control flow (red) to implement dataflow semantics. The DFG serializes execution. (b) RIPPLE directly supports
token queues (golden/orange) and atomics (light blue), shrinking the DFG while exposing parallelism.

tasks that generate dynamic amounts of work. RIPPLE’s ISA abstracts SDA token queues, allowing
the compiler to map asynchronous task communication nearly one-to-one onto SDA hardware.

By exposing dataflow semantics, RIPPLE decreases program size, increases parallelism, and saves
energy. Fig. 2 demonstrates RIPPLE’s benefits; it shows the DFGs of breadth-first search (bfs) compiled
for Riptide [33], a recent general-purpose dataflow architecture (left) and for RIPPLE (right). bfs
traverses the graph using a FIFO queue, but its C implementation fails to express high-level queue
semantics. Instead, the code implements a software queue using loads, stores, and data-dependent
control flow. Riptide’s compiler produces a large DFG that serializes execution to order the queue’s
loads and stores. Fig. 2a has a sea of control flow (red nodes) with fewmemory (green) and arithmetic
(blue) instructions. On a real-world input, 83% of all dynamic instructions were control flow.

The RIPPLE DFG (Fig. 2b) has fewer than half as many instructions. Traversal logic is implemented
with an asynchronous code region, or async, that provides iterator semantics and a built-in work
queue. bfs’s queue semantics lowers directly to a single spill instruction (orange node), eliminating
almost all control flow in the DFG. spill implements vertex queueing — including concurrent
enqueue and dequeue operations — using existing hardware token queues; it automatically spills
tokens to memory if the hardware queue is full. Moreover, RIPPLE supports atomics to synchronize
concurrent memory accesses in asynchronous tasks, allowing concurrent updates in bfs. RIPPLE
efficiently implements atomics via its acquire and release instructions (light blue nodes). atomics
eliminate memory orderings imposed byC, further shrinking programs while increasing parallelism.
Contributions. This paper solves an abstraction inversion problem that hinders SDAs:
• Language. RIPPLE implements the asynchronous dataflow programming model to efficiently
program SDAs. RIPPLE’s few primitives for explicit asynchronous communication, queueing, and
pipelining are designed to map nearly one-to-one to SDA hardware (e.g., token queues).

• Spatial Dataflow ISA. RIPPLE introduces queue and spill instructions that expose token queues
for safe, efficient task communication, and RIPPLE provides acquire/release instructions for
efficient and composable shared-memory synchronization on SDAs.

• Evaluation.We implement a full RIPPLE software stack and architectural simulator. Across nine
important workloads, RIPPLE achieves a gmean 3× speedup, gmean 58% gain in IPC, and nearly
2× reduction in program size and dynamic instruction count vs. Riptide, a recent SDA.

2 The Dataflow Execution Model
This section motivates RIPPLE’s contributions using a running example, bfs. Sec. 2.1 demonstrates
how SDAs achieve high ILP through the dataflow execution model. Sec. 2.2 presents the abstraction
inversion problem, which prevents SDAs and their compilers from extracting the ample dataflow
parallelism present in many programs. RIPPLE solves the abstraction inversion problem by encoding
dataflow semantics from the language down to the architecture (Sec. 3-Sec. 6).

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 157. Publication date: June 2025.



157:4 Souradip Ghosh, Yufei Shi, Brandon Lucia, and Nathan Beckmann

2.1 A primer on dataflow execution
The dataflowmodel is the source of SDA performance. Dataflow execution achieves high ILP through
three key properties: asynchronous instruction execution, fine-grained pipeline parallelism, and
token queueing. We detail these properties by walking through a code section of bfs (Fig. 3). The
program builds a search tree (parents) of a sparse graph using a software queue (queue).

1. void bfs (u32 *ofs, u32 *nbrs, 
2. i32 *parents, u32 source): 
 

3. u32 *queue, head = 0, tail = 0
4. void push(v): queue[tail++] = v
5. u32 pop(): return queue[head++]
6. bool empty(): return head == tail

7. while (!empty()): 
8. u32 v = pop()
9. for (i = ofs[v]..ofs[v + 1]):
10. u32 nb = nbrs[i]
11. if (parents[nb] == -1):
12. parents[nb] = v
13. push(nb)

Fig. 3. bfs in C-like code.

parnbrs

i
-1

par

vTT

== LDLD

ST

Fig. 4. DFG of
L10-12 of Fig. 3.
parents is abbre-
viated to par.

How does dataflow execution work? Fig. 4 plots a
DFG of L10-12, which performs neighbor updates in
bfs. The DFG is implemented with the Riptide ISA,
a recent general-purpose SDA [33]. For concreteness,
we focus on Riptide’s ISA, but the lessons gener-
alize to other SDAs. Fig. 4 uses common instruc-
tions like loads, stores, and comparators ( LD , ST , == ).
The DFG uses steering control (𝜙−1 [21, 27]), routing val-
ues from producers to consumers using steers ( T ) in-
stead of branches. T takes a data value and a conditional;
if the conditional is true, it emits the data. Otherwise,
it emits nothing. The top three nodes of the DFG per-
form the conditional in L10-11 to check for an unvisited
neighbor: they load a neighbor, nb = nbrs[i], then load
parents[nb], and compare it to −1. The bottom three
nodes set parents[nb] to the current vertex, v. The DFG
conditionally routes nb and v through T s to the ST .

Fig. 5. Running Fig. 4
across two for loop it-
erations (L9, Fig. 3).
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Fig. 5 shows an execution trace that highlights asynchronous instruction
execution, pipeline parallelism, token queueing, and high ILP. This trace
shows two iterations of the for loop (L9): the first (denoted by tokens)
processes an unvisited neighbor, but the second ( tokens) does not. In this
example, instructions fire and finish in one step, unless otherwise stated.
Step 1 . A token that represents i is present and LD nbrs fires because it
has all of its inputs. The LD takes a single step to finish. It produces output
tokens that arrive at consumers on the next step.
Step 2 . Output s from 1 (sent along the darkened arcs) arrive and queue
at both of LD nbrs’s consumers. One consumer, a T , does not yet have a
complete set of tokens, so it does not fire. The other consumer, LD par, has all
of its inputs (i.e., just the result of LD nbrs) and fires. However, load latency
can vary, and this LD arbitrarily takes longer; it will continue past step 2
and finish in 3 . Meanwhile, a from the second iteration arrives at the LD

of nbrs, enabling it to fire again and pipeline work over consecutive loop
iterations. The second iteration’s LD nbrs finishes in a single step and sends
output s for the next step.
Step 3 . The s from 2 arrive and queue at both consumers. A queues
behind the at LD par while the LD finishes up from step 2 , and a also
queues at the T while it awaits its other input. Neither consumer fires using
s in 3 . Once LD par completes, it outputs a that arrives in 4 .

Step 4 . LD par’s result arrives at == , allowing it to fire. Concurrently, LD par

fires again by dequeueing the and finishes in one step. Thus, LD par also
pipelines tokens from consecutive iterations, just like LD nbrs in 1 - 2 .
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Step 5 . Both T s fire as they have full input sets (e.g., s). Since the first
loop iteration finds an unvisited neighbor in this example, the s from ==

are true. T s thus pass nb and v to arrive at the ST on 6 . Simultaneously,
== pipelines work, firing using the s from the LD of par.
Step 6 . The ST fires using s and finishes in one step. Meanwhile, the T s
pipeline – this time, they fire using s. Since the second iteration does not
update parents, the s from == are false. Since the condition is false,
the T s finish but produce nothing for the next step.
Step 7 . All remaining tokens were consumed in 6 . The execution ends.
Asynchronous dataflow firing and queueing are key to parallelism
and throughput.Dataflow firing yields high ILP in bfs because indepen-
dent instructions can fire asynchronously and in parallel as soon as inputs
arrive. Multiple instructions fire in most steps (i.e., 2 and 4 - 6 ) in Fig. 5.
By contrast, a von Neumann program serializes instructions into a stream

and forces the system to rediscover parallelism. Fig. 5 also achieves high pipeline parallelism by
exploiting token queueing. Queueing decouples produces from consumers, allowing a producer to
execute several times, even if its consumers are not ready (e.g., LD nbrs and its consumer T in 1 - 3 ).
This decoupling allows both loop iterations to pipeline through the DFG (e.g., in 4 - 7 ).

Fig. 6. An SDA implementing Fig. 5a. In-
structions map to PEs and send tokens
that buffer at hardware queues.

An SDA exploits this high ILP by spatially distributing a
DFG on its fabric, allowing natural asynchronous instruction
execution, pipelining, and queueing behavior inherent in
the dataflow model. As shown in the example of an arbitrary
SDA in Fig. 6, dataflow programs are commonly mapped
onto an SDA fabric exactly as how they appear as a DFG [33,
35, 54, 73]. All six instructions are distributed across PEs,
and DFG edges for communication are routed through the
NoC. Token queues are implemented directly in hardware
at each PE.

2.2 The dataflow abstraction inversion problem
Recent SDAs focus on extracting DFGs from sequential code [8, 14, 23, 33–35, 41, 54, 55, 60, 71, 76,
81, 82, 87] (often C), which lacks abstractions for asynchrony and queueing. Even when queueing
is essential to the algorithm (as in bfs), programmers have no way to directly refer to queueing
primitives that express asynchronous communication or token queues in hardware. Instead, the
programmer writes a software queue with the same behavior as a hardware queue, but using many
control-flow operations and memory accesses. The queue abstraction is inverted, leading to a serious
performance problem. In contrast to Sec. 2.1, where the SDA achieves high ILP and IPC on a simple
DFG of fine-grain data dependencies, coarse-grained, queue-based communication that spans the
entire loop nest in bfs (Fig. 3) does not compile to a simple DFG. The extra instructions to support
the software queue amounts to half of bfs’s DFG (bold-bordered nodes in Fig. 2a).
Our observation: ignoring coarse-grain dataflow semantics leads to significant serialization.
A compiler sees the implementation of queue as many unstructured memory dependences, rather
than a dataflow dependence. If multiple accesses potentially alias and race, an SDA compiler enforces
memory ordering: accesses are conservatively serialized at compile-time to follow program order, at
the expense of performance. In bfs, memory ordering serializes push and pop (L8, L13, Fig. 3). Fig. 7
zooms into the (simplified) subgraph to show how push and pop are serialized. loads and stores
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take an optional ordering input (red arcs). The for node abstracts loop iteration: every iteration, it
emits i and a control token, last. last is true on the last iteration and false otherwise.

head
i … nb

last STdoneT

queue
ST

queue
LD tail

pop push

v … for
T

Fig. 7. Memory ordering of pop→ push
in Fig. 2a. Red edges indicate ordering.

From the left, pop (i.e., the LD ) produces v, the current
vertex, and triggers the inner for loop to emit i and a
neighbor (nb, L8-10, Fig. 3). If nb is unvisited (L11), it
will push back to queue (L13). A steer T (top) routes
nb to the store ST for push. Due to memory ordering,
all pushes in the inner loop must complete before the
next pop can execute. Every execution of the ST emits
an ordering token (outgoing red edge) that the bottom
steer T gates. Only when last is true does the bottom
T allow the latest ordering token from ST to pass through to LD . In practice, several control-flow
instructions implement each red edge and route tokens into and out of nested control structures.
The effect compounds when multiple sets of aliasing reads and writes exist across the program.

Fig. 8. A high-level pipeline diagram of bfs referencing C (Fig. 3) and RIPPLE code (Fig. 9). parents are
initialized to -1 . (a) Riptide is marred with serialization of the software queue. (b) RIPPLE eliminates ordering
with pipelined tasks and atomics for better IPC and speedup.

Memory ordering prevents asynchronous parallel execution. Fig. 8a shows a significant loss
of parallelism from ordering using a pipeline diagram of bfs running on Riptide. The diagram
illustrates the ordering (red edges) in Fig. 7: all unvisited vertices push before another is popped.
Read-modify-writes (RMWs) to parents (L12) are also ordered. The ordering prevents the idealized,
pipelined loop iterations shown in Fig. 5 and results in serialization (third-fourth rows of Fig. 8a). This
loss in parallelism stems from the lack of language-level abstractions that match dataflow execution.

Efficiently ensuring memory correctness is a long-standing problem for all SDAs. Prior architec-
tures and systems impose ordering in a variety of ways, but the net result is the same: serialization
and performance degradation. Strict ordering models [76] and Riptide-style token-based order-
ing [15, 54] degrade parallelism, even when applied to code blocks to amortize costs [90]. Id’s I-
and M-structures [5, 9, 57] stand out as a mechanism to ensure memory correctness while retaining
parallelism, but they require intrusive software changes. No existing solution ensures memory
correctness without degrading performance due to serialization or making programming harder.

3 RIPPLE to the Rescue!
RIPPLE corrects the dataflow abstraction inversion by implementing the asynchronous dataflow
programming model, in which programs are decomposed into asynchronous code regions that
explicitly communicate data across regions. These abstractions enable the compiler to lower coarse-
grain dataflow behavior to dataflow primitives implemented in SDA hardware. RIPPLE reduces DFG
size and boosts parallelism by eliminating the inefficiency of software queues.

RIPPLE’s prototype language provides asynchronous iterators or asyncs, each of which represents a
task-parallel region of code. An async can contain arbitrary code written in an imperative language.
asyncs execute asynchronously from one another. Communication between asyncs is explicit and
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happens via queues that match the dataflow execution model. With just a few changes to the code to
encode asynchronous dataflow and queueing, the resulting implementation in RIPPLE eliminates
the memory ordering dependences that degraded performance.
Fig. 9 shows bfs implemented using RIPPLE. It has two asyncs, each of which has an implicit,

dedicated task queue for its inputs. At runtime, Init (L2) kicks off the traversal with a task,
or dynamic instance of an async, which pushes source to async F’s input queue. As F (L3-9)
asynchronously receives inputs (e.g., source) to its task queue, it simultaneously dispatches tasks
that run in pipeline-parallel fashion. We mark F with ind, expressing that its tasks are independent,
with no memory ordering or data dependencies between any two tasks. As a result, F’s independent
tasks use atomics to synchronize updates to parents (L6-9), avoiding memory ordering that would
force a complete RMW to finish before another one starts. In RIPPLE, atomics pipeline, allowing
many RMWs to launch before the first finishes. Finally, RIPPLE allows arbitrary, unrestricted task
creation. Here, any task of F can push new inputs (i.e., unvisited vertices) back to create a future
task of F (L11). RIPPLE’s execution enables high throughput processing over vertex neighbors.

1. def bfs (u32 *ofs, u32 *nbrs, 
 i32 *parents, u32 source):

2. async Init(): F.push(source)

3. async F (u32 v) ind: 
4. for (i = ofs[v]..ofs[v + 1]):
5. u32 nb = nbrs[i]
6. atomic <i32*>(&parents[nb]):
7. if (parents[nb] == -1):
8. F.push(nb)
9. parents[nb] = v

Fig. 9. bfs in RIPPLE.

Fig. 2b shows that bfs gets much smaller, with a single
backedge (orange) to a spill instruction using existing to-
ken queues. Fig. 8b shows how RIPPLE aggressively pipelines
and concurrently processes vertices. Nodes 1 - 3 queue,
dispatch, and pipeline using async (first row) and push
(last row) while 0 finishes processing. Rows 3-4 of Fig. 8b
show perfect pipelining because atomics execute in paral-
lel. Ripple achieves better performance with fewer resources.
By embracing bfs’s inherent dataflow behavior — i.e.,

queueing and asynchrony — RIPPLE removes bottlenecks
that limit prior SDAs. First, async and push directly pro-

gram token queues, obviating software queues. Second, explicit asynchrony removes serialization
needed for sequential code. For bfs, RIPPLE need not sequentialize tasks, like the while loop in C
demands. Vertices queue and drain safely and asynchronously. Third, RIPPLE’s architecture elimi-
nates nearly all overheads for task queueing and dispatch. queue and spill primitives are handled
by hardware queues that efficiently self-manage a buffer of tokens and dynamically route tokens to
and from memory when needed. Queueing and dispatch thus appear automatic in the language.
Ripple need no extra runtime support for asyncs and few changes to monolithic code to reap benefits.1

4 Programming with RIPPLE

The RIPPLE language implements the asynchronous dataflow programming model, which explicitly
expresses dataflow semantics. RIPPLE provides a small set of language features designed around the
dataflow execution model and existing SDA hardware. This section explores those features in the
context of our RIPPLE prototype implementation. Sec. 3 showed an example RIPPLE program.

4.1 Asynchronous programming in RIPPLE

An asynchronous iterator or async defines a code region that accepts inputs through an implicit
queue. async automatically iterates over inputs and dispatches work as a task (a dynamic instance
of the async). Fig. 10a shows the syntax of an async. An async has a name, an arbitrary number
of input arguments that forms a task input tuple (L1-2), and a body (scoped between L2 and L4)
containing arbitrary code (C code in our prototype).

1See Appendix for more examples of C code vs. RIPPLE code.
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A RIPPLE task executes with sequential semantics. Tasks of different asyncs run in parallel, and
tasks of the same async pipeline in dataflow fashion. An async dispatches tasks following dataflow
queueing semantics: they drain and launch in the FIFO order of the async’s input queue. Tasks
do not need to finish in-order, e.g., if tasks take diverging control paths. An async with an empty
input tuple (e.g., Init in Fig. 9) runs immediately.

1 async Name ([type _],
2 ...) [ind] {
3 // body
4 }

(a) async syntax.

1 async P (u32 x) ind {
2 atomic<u32*>(&A[x]){
3 A[x]++;
4 }}

1 async Q (u32 y) ind {
2 atomic<u32*>(&A[y]){
3 A[y] = y - 1;
4 }}

(b) Shared-memory updates with atomics.

Fig. 10. atomics synchronize racing shared-memory updates.

Independent work. By default, RIPPLE orders any dependencies across tasks of the same async in
dispatch order (e.g., serializing updates to the same static variable). A programmer can, instead,
mark an async as independent or ind, indicating the absence of dependences between tasks of
that async. The absence of dependences exposes more pipeline parallelism. ind, however, does
not prevent data races between pipelined tasks of the same async. Instead, the programmer must
synchronize accesses to shared memory using atomics, which Sec. 4.2 describes. Applying ind to
an async essentially converts it from DOACROSS parallelism to pipelined DOALL parallelism [42].
Fig. 9 implements bfs with ind to aggressively pipeline unvisited neighbor updates.
push is RIPPLE’s only inter-task communication primitive. push creates and sends a tuple of task
inputs to a named async, automatically queueing those inputs at that async (L2 and L8 of Fig. 9).
RIPPLE allows feed-forward and cyclic communication among asyncs using push. RIPPLE’s architec-
ture supports sending an unrestricted amount of data from one async to another, allowing the user
to avoid thinking about communication bottlenecks or deadlocks related to queue capacity (Sec. 5).

push is also RIPPLE’s main task coordination primitive, with fence-like behavior that enforces
dataflow ordering. A push does not execute until the completion of all reads, writes, and pushes
that precede that push on its dynamic control-flow path from the entry point of the async.

4.2 Shared memory synchronization in RIPPLE

Tasks synchronize their accesses to shared memory using atomics, designed after atomic sections
or blocks [17, 18, 31]. Fig. 10b shows the syntax of an atomic. atomic is parameterized, taking an
arbitrary-sized, typed list of input memory addresses, which the user reads from or writes to in the
atomic’s body. atomics have acquire-release semantics similar to two-phase locking [10, 30]. The
body of an atomic executes only after acquiring exclusive access rights for all input addresses. The
atomic releases its access rights when its body finishes executing. RIPPLE atomics allow multiple
inputs that may alias, and instances of an atomic with disjoint sets of input addresses pipeline.
RIPPLE implements these semantics in its ISA (Sec. 5), keeping the programming model simple.
RIPPLE’s memory model is a data-race-free (DRF) memory consistency model [1], which gives
undefined semantics to a program execution with a data race. atomics order concurrent accesses
to the same memory location(s), eliminating data races. atomics have “all-or-nothing” atomicity
semantics, and all accesses in an atomic appear to other atomics to happen simultaneously.
A valid execution of a RIPPLE program corresponds to a partial order over memory operations.
Operations in the partial order are unordered, except for (i) the serialization of operations with
direct dataflow dependences (including explicit ordering dependences) and (ii) the serialization of
memory operations in atomics that have overlapping input address sets.
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4.3 Why is Ripple designed this way?
Each RIPPLE language primitive is designed to integrate with existing SDA hardware primitives
without overly complicating the programming interface or the architecture. While RIPPLE is not the
first to introduce asynchronous tasks (see Sec. 9), its implementation of the asynchronous dataflow
programming model yields a concise language-to-hardware mapping.
Explicit dataflow semantics. Capturing dataflow behavior in code means expressing asynchronous
queue-based communication and coarse-grain pipeline parallelism (Sec. 2). RIPPLE’s asynchronous
iterators and communication primitives abstract exactly these properties: (i) async defines queueing
semantics for task inputs and pipelining semantics for task execution; (ii) push enables arbitrary
asynchronous task communication. Combined with its ISA, RIPPLE solves the abstraction inversion
problem by preserving application-level dataflow semantics through compilation.
async and push precisely capture an SDA hardware token queue’s functionality. In the
dataflow model, a DFG edge represents an instruction dependence, and an SDA implements the
dependence with a hardware token queue. A hardware queue is self-managing: it asynchronously
receives input tokens and automatically drains whenever its associated PE is ready to fire another
instruction (using the universal dataflow firing rule). async and push are designed to express
dataflow dependencies just as an SDA does; they capture hardware queueing behavior in a number
of ways. First, push defines an explicit dataflow dependence between asyncs in a program. Just
as DFG dependencies are implemented by SDA token queues, a dependence defined by push is
captured with async’s input queueing semantics. async defines an implicit, opaque work queue for
its inputs that is only modified by push, rather than exposing queues to the user (e.g. via a special
type). Limiting user control (e.g., by eliminating random access or preventing arbitrary queue
instantiation [17, 28]) streamlines the API without losing the abstraction of token queues. Second,
async defines iterator semantics to invoke automatic task dispatch rather offering user control over
task launch. This design precisely expresses the automatic nature of draining a hardware queue.
Any explicit “pop” or “receive” primitive that complements push would be a mismatch. Third, push
is synchronization-free in software and automatically sends task inputs; it precludes the need for
any runtime system. Instead, RIPPLE exposes hardware queues and arbitration in its ISA (Sec. 5),
allowing the architecture to efficiently handle all task creation and routing.
RIPPLE’s atomic simplifies both the language and architecture. atomic alone can express
arbitrary shared-memory synchronization, eliminating the need for a library of common, low-
level primitives (e.g., compare-and-swap or atomic-increment). This design also reduces the need
for complex architectural support; RIPPLE’s ISA adds only two instructions to directly implement
atomic (acquire and release, Sec. 5.4). Common low-level atomics are implemented by composing
acquire and release rather than introducing a specialized instruction for each one.
Eliminating ordering bottlenecks. RIPPLE is designed to make it easy to expose coarse-grained
pipeline parallelism. An independent (ind) async frees the compiler to optimize without adding
memory ordering across tasks. Additionally, atomics synchronize shared-memory accesses with
high performance; they pipeline and eliminate conservative memory ordering to reduce DFG size.
Simplicity.Motivated by the observations from Sec. 2.1-Sec. 2.2, RIPPLE extends a mainstream
language, namely C in our implementation, rather than proposing an entirely new language. This
strategy avoids a complete rewrite of programs, unlike other dataflow languages (Sec. 9). Rather,
RIPPLE provides a small set of primitives that directly express the coarse-grained dataflow parallelism
missed by mainstream SDA compilers. The RIPPLE version of bfs in Fig. 3 highlights the simplicity:
an async and an atomic replaces the serialized while loop and the rest remains the same.
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5 The RIPPLE Architecture
RIPPLE introduces simple dataflow ISA extensions that implements the queueing and synchronization
primitives in RIPPLE’s asynchronous dataflow programming model.

5.1 Baseline architecture
RIPPLE builds on the Riptide ISA, which is a general-purpose ISA that supports full program
execution in the ordered dataflow execution model. Sec. 2.1 demonstrated the ordered dataflow
model, in which a PE fires its instruction after all of its inputs arrive via FIFO token queues (TQs).
The ISA supports standard arithmetic and memory instructions and converts memory ordering
into direct data dependencies. RIPPLE uses token steering to implement conditional control-flow (as
shown in Sec. 2.1); the left side of Fig. 11 shows RIPPLE’s main control-flow instructions.

c

ad

if c: ret d ret a if c: ret a
else: ret b 

b

c

a b

ORD MT

L

Steer Order Merge
d

ret d

Q

Queue
R

A

ret RR(L, R)

Arbiter

Fig. 11. Key instructions in RIPPLE. It borrows steer, order,
and merge from [33] (left). It adds queue and arbiter (right).

2 F.push(source)

8 F.push(nb)

3 async F (u32 v)

A

=

Dispatch

Task input 
creation

Task input 
queueingQ

Task communication in bfs

Fig. 12. arb (A) and queue (Q) (shown for bfs)
perform task creation, queueing, and dispatch.

5.2 RIPPLE architecture extensions
Two simple ISA primitives implement TQs and arbitration for multiple pushes to a TQ. The right
side of Fig. 11 shows these extensions.
queue instructions expose hardware TQs to the compiler. queues have a single data input and
output, passing its input token unmodified to its output. A queue can be marked to spill, which
indicates the need to back the queue’s input with memory (i.e., dynamic capacity). A spill is
architecturally identical to a queue, but its unlimited capacity to buffer tokens prevents deadlocks
stemming from overflow of a TQ in hardware (Sec. 5.3 describes this problem in more detail).
arbiter (arb) collects inputs pushed from different locations and fairly merges them into a TQ.
arb takes two data inputs (L and R) and produces one output by selecting round-robin from inputs.
If a single input is present, arb still fires, passing it as output.
signal-arbiter (sarb) is identical to arb but outputs the side chosen (not data): 0 for L, 1 for R.
queue and arbiter directly implement language-level asynchronous communication.An
arb-queue pair is allocated for each async input. An arb selects tokens from pushes to an async,
where each push is a separate arb input. We demonstrate using bfs (Fig. 9) and the DFG of async F’s
input queue in Fig. 12. The DFG shows a single arb-queue pair for F’s input, v. In Fig. 12, there
are two pushes to F, requiring a single arb. Note the simplicity in Fig. 12 over the same program
compiled from C (Fig. 2a); only two RIPPLE instructions are needed to support the same dataflow
queueing semantics that Fig. 2a implements with a sea of control flow (red, dark-bordered nodes). By
abstracting token queues, RIPPLE language primitives can directly program existing SDA hardware.
RIPPLE supports any number of async inputs and pushes by composing arbitration instruc-
tions.Multi-input asyncs require more care than single-input ones (e.g., F in bfs). Fig. 13a shows
multiple pushes to async F, which has two inputs. Fig. 13b shows the resulting arb-queue pairs
for each input. The risk is that distributing input tuples without synchronization can erroneously
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async F (u32 in0,     
  u32 in1): 
  ...
  F.push(a, b)
  ...
  F.push(c, d)
  ...

(A)

a
Per-element queue

Q0

Select 
tree

merge
trees 0|1

order 
treesc b d

a b c d

a c b d

ORDORD

M0 M1

Q0 Q1

SA

Q1

A1A0

(B) (C)

Fig. 13. General task input synchronization. (a) A multi-input
async, F, and 2 pushes to it. (b) arb-queue pairs per element. (c)
order-, select-, and merge-trees ensure tuples are ready, picks
one, and emits per-element tokens to queue.

2. async Init(): 
 F.push(...)

3. async F (u32 v): 
4. for (i = ...):
     ...
8. F.push(nb)

=
I

F
1

1>

Fig. 14. Task dependence graph (TDG)
of bfs.

interleave tokens that arrive at different times. RIPPLE requires logic to choose only a complete
input tuple. The logic has three parts: (i) tuple synchronization, (ii) tuple arbitration, and (iii)
element-wise token selection. Fig. 13c illustrates an order-tree; it waits until an entire tuple is
ready (e.g., both a and b in <a,b>). Once a tuple is ready for arbitration, its order-tree emits a
token that feeds a select-tree of sarbs. The select-tree emits boolean signals that encode which tuple
it picked. Fig. 13c shows a select-tree, comprising a single sarb since there are only two tuples
(<a,b> and <c,d>). Finally, the signals guide the chosen tuple, routing tuple-element-wise to their
respective queues. merge-trees perform element-wise selection; each merge outputs a token based
on a condition. In Fig. 13c, a merge-tree per tuple element takes the select-tree as its condition
input (e.g., SA → M0). arbs in Fig. 13b lower to merge-trees in Fig. 13c to perform element-wise
selection. order-, select- and merge-trees grow logarithmically with the number of pushes.

5.3 Preventing deadlock in RIPPLE tasks
While RIPPLE’s ISA abstracts hardware queues and implements arbitrary communication between
asyncs, the resulting DFGs can produce deadlock when those queues do not have enough capacity.
RIPPLE identifies deadlock in DFGs and avoids deadlock using the spill instruction.
How might RIPPLE programs deadlock? bfs (Fig. 9 and Fig. 14) illustrates the risk for deadlock.
async F (L3-8) pipelines tasks without memory ordering between them. The asynchrony of both
task creation and dispatch allows for rapid, unrestricted queueing of inputs.

The dynamic rate of task creation in async F is higher than the rate of dispatch because each task
may pushmany neighbors while processing a single vertex.With a finite-size queue implementation,
F exhausts its resources, blocking more inputs from being pushed. This blocking cascades through
the DFG, eventually forming a cycle and deadlocking the program when nothing can fire.

RIPPLE captures this notion using a task dependence graph (TDG) [25, 79] that attaches relative
rates of communication to dependent tasks. Fig. 14 shows the TDG for bfs lined up with code
snippets. Nodes are asyncs ( F and I ) and arcs are task creation points (i.e., pushes). Importantly,
when F dispatches, it pushes at most i inputs back to F (L8); i>1 if a vertex has many unvisited
neighbors. The TDG encodes the cycle and the relative rate of task creation to dispatch on each arc.
F ◀⊃ is then labeled with a variable rate: >1. Variable rates along a cycle indicate a possible deadlock.
The key observation: task inputs must have space to queue to guarantee forward progress
in RIPPLE. Cyclic task communication is a property of a RIPPLE program. For instance, bfs must
complete the for loop (lines 4-8 in Fig. 14) to finish one of F’s tasks, so it must have space to
queue the new inputs for F. Common deadlock avoidance schemes fail to support cyclic, dynamic
routes; they suggest eliminating cycles [25] or adding minimal, finite buffering [68] unsuitable for
dynamic token queueing. Imposing extra control flow to throttle progress yields a DFG similar to
one extracted from C, bloating it and eliminating any asynchrony or parallelism.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 157. Publication date: June 2025.



157:12 Souradip Ghosh, Yufei Shi, Brandon Lucia, and Nathan Beckmann

Only dynamically sized, on-demand buffering avoids deadlock in RIPPLE programs.Once
a queue runs out of buffering, RIPPLE automatically spills task inputs to a backing queue (BQ) in
memory. RIPPLE accomplishes spilling with the specialized spill instruction. spill is functionally
equivalent to queue, but it automatically reroutes tokens to the BQ whenever TQ storage runs
out using an internal state machine (see Sec. 6.2 for its microarchitecture). A single instruction
to manage both TQ and BQ (i) retains the asynchrony of task input creation and dispatch and (ii)
avoids extensive resource consumption of distributing logic across many added instructions. RIPPLE
prevents deadlock by analyzing the TDG and marking queues as spills in the compiler.

5.4 Architecture for RIPPLE atomics
RIPPLE introduces acquire (acq) and release (rel) instructions to directly implement atomic’s
acquire-release semantics. acq and rel make requests (req) to the SDA memory system to acquire
rights to an address and release it. acq and rel can compose to handle multi-input atomics and
aliasing input addresses, while maintaining high performance.

base

S = 1 a = 0|1

AQ
while !go:
  if a: 
    req<rel>
  a = req<acq>

I

out: CS ; pop: All out: a
pop: a

out: a

T

Acquire
CS

go

ofs
base

S = 1

RL

Release
CS

ofs

Fig. 15. acq/rel implement RIPPLE atomics and acquire/release addresses. acq has a state machine (middle).

atomic(&A,&B): *A += *B

AQ&A LD&A

AQ&B RL&B

RL&A

LD&B

ST&A∧ +

Fig. 16. DFG of an atomic. acq-rel
pairs sandwich loads/stores for atomic-
ity. acqs synchronize first (dashed arcs).

Synchronizing memory accesses using acq and rel.
acq and rel are outlined in Fig. 15 and put in action in a
read-modify-write atomic (Fig. 16). Each address requires
an acq-rel pair that envelops loads and stores in the DFG
(i.e., two pairs in the example). To guarantee atomicity, all
acqs must acquire before proceeding with dependencies.
acqs acquire in parallel and synchronize with a reduction
tree that controls if they proceed. Otherwise, all acqs must
release, if necessary, and try again. The DFG shows a single-
node tree (∧ ) that reduces and routes to both acqs.
acq takes 4 inputs: a base and offset (ofs) to form an ad-
dress, an optional control signal (CS) if ordered with other
atomics, and a signal, “go”, that decides if it should retry.
acq has two outputs: a, a status returned from an address
acquire request (req<acq>), and S, a final success status.

Each acq starts at state Init ( I ) once it receives <base,offset,[CS]> and sends out req<acq>.
It then switches to Try ( T ) and runs the loop in Fig. 15. Until go=1, the acq passes the return value
from req<acq> as output a to the reduction tree and waits for a new go input. Importantly, an acq
must release (i.e., req<rel>) an acquired address and retry if other acqs failed (i.e., <a=1,go=0>).
Once go=0, acqs revert to I and send S, shown as solid DFG arcs from acqs to dependent memory
instructions (e.g., AQ&A → LD&A). They then consume inputs and wait for a new address.
rel takes base, ofs, and CS. It invokes a release request (req<rel>) once it receives CS from
completed memory operations upstream (e.g., ST&A → RL&A). Like acq, rel emits S, an ordering
token. rels do not need to synchronize. A concurrent atomic with the same input set cannot
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start unless all addresses are acquired, allowing even a single unreleased address to block another
atomic. This feature maintains atomicity and enables rels to remain disjoint (as seen in Fig. 16).

5.5 Preventing deadlock in RIPPLE atomics
atomics must be have enough token buffering from acqs→ rels in the DFG so acquired addresses
are not held perpetually. atomics that produce a live-out (e.g., an atomic load) consumed by
another atomic can cause deadlock if both share aliasing inputs. Consider a consumer atomic that
waits on an address that a producer atomic has acquired but has not released. A “backpressure”
or blocking cascade (similar to Sec. 5.3) can stall instructions in the producer, preventing it from
executing its rels. The data dependence in the DFG that causes backpressure and the dynamic
memory dependence between atomics creates an implicit deadlock-inducing cycle.
RIPPLE prevents deadlocks between atomics by reapplying spill. spills are inserted at any
live-outs that yield data dependencies between atomics to provide abundant buffering. On-demand
buffering enables forward progress so atomics can eventually release all acquired addresses.

6 RIPPLE’s Implementation
We implement a full RIPPLE system: a language prototype, compiler, and spatial dataflow architecture.

6.1 RIPPLE’s language prototype and compiler
We built the RIPPLE language prototype on top of C, using its types and scoping. RIPPLE’s async
mimics C function signatures (e.g., Fig. 9), simplifying frontend compilation without adding new
conventions. RIPPLE generates optimized DFGs, lowering RIPPLE code to LLVM-IR and expanding
prior work [33] to insert control flow, enforce memory ordering, and prevent deadlock.

%a = @A.iter()
%cond = cmp ne, %a, 0
br %cond, %if, %else

br 1, %A.body, %exit 

B.push(%a)
br %A.end

%s = sub %a, 1
A.push(%s)
br %A.end

br %A.begin

%b = @B.iter()
call @print(%b)
br %exit

Ripple source code

CFG

br 1, %B.body, %exit 

ret void

switch ...

exitA.end

if else

A.body

A.begin

B.begin

B.body

entry

async A (u8 a):
 if (a): 
   B.push(a)
 else: 
   A.push(--a)

async B (u8 b):
 print(b)

Fig. 17. RIPPLE’s frontend produces a well-formed control
flow graph (CFG, as abridged LLVM-IR) with glue code (gray
blocks) and async code (bright-colored blocks).

RIPPLE’s frontend generates a single,
well-formed control flow graph (CFG) in
LLVM-IR for each program (see Fig. 17
for an example). Frontend passes convert
push, async iteration, and ind to intrin-
sic functions (see %a = @A.iter() in
block A.body). Each atomic is similarly
translated; a pair of _acq/_rel intrinsics
surrounds its scope. async and atomics
are converted to basic blocks via clang
(e.g. async A is A.body, if, and else). To
convert several asyncs to one CFG, the
frontend adds glue code (gray blocks) and
transforms async subgraphs to loops. A well-formed CFG importantly avoids irreducibility [2]
and maintains assumptions made by LLVM (e.g., in dominance analysis). Glue code is not lowered
further; it only streamlines compiler analyses.
Memory ordering for RIPPLE. Before lowering to the DFG, RIPPLE’s compiler performs memory
ordering analysis, similar to [33]. RIPPLE borrows Riptide’s analysis framework, which (i) leverages
alias analysis to build an ordering graph, (ii) optimizes it with a specialized transitive reduction,
and (iii) inserts data dependencies to enforce happens-before arcs.

RIPPLE’s compiler builds on this by handling atomics. _acq/_rel pairs become nodes in the order-
ing graph. New happens-before arcs are added: (a) _acq→ paired _rel, (b) _acq→ loads/stores
in its atomic, (c) loads/stores in an atomic → its _rel, (d) _rel → all reachable and aliasing
_acq. (a) and (b) enforce that an atomic must acquire its addresses first. (c) compels reads and
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writes to finish before releasing. (d) orders atomics with other atomics that have aliasing input
addresses (inferred via alias analysis) in the same async. The compiler transitively reduces the
ordering graph to prune arcs and enforces remaining edges. Importantly, atomic reads/writes are
only ordered with each other and their _acq/_rel pair. Different atomics then run concurrently.
DFG generation. RIPPLE creates a DFG from LLVM-IR. It leverages steer and stream insertion
from Riptide for control flow and optimized loop iterators. Next, every async parameter maps to
an arb-queue pair in the DFG. push intrinsics are converted to input arcs for arbs and iterators (e.g.,
.iter()) to outgoing arcs from queues. When necessary, order-, select-, and merge-trees are added
for multi-input asyncs or >2 pushes to an async. Finally, atomics are lowered by mapping each
_acq/_rel intrinsic to acq-rel pairs in the DFG per address. A reduction tree of ands are inserted
for multi-input atomics. Otherwise, the “go” input is configured to 1 for a single-acq atomic.
Spill analysis. The RIPPLE compiler prevents deadlock by marking or inserting spills. It first
builds a task dependence graph (TDG, Sec. 5.2) from each push in the program. Nodes are asyncs
and arcs are pushes. Arcs are conservatively labeled with a variable rate (>1) if the associated push
resides in a loop; i.e., each task of the push’s parent async can create many tasks itself. Arcs are
labeled with 1 otherwise. Variable-rate arcs along a TDG cycle indicate potential deadlock. RIPPLE
then picks any queue in the DFG that corresponds to a node along a cycle and marks it as spill.

The compiler also prevents deadlocks for atomics (Sec. 5.5). It first checks for dependent atomics;
i.e., if any live-out from an atomic in the DFG reaches another atomic. If dependent atomics access
aliasing memory, a spill is inserted after each live-out that reaches the other atomic.

6.2 RIPPLE microarchitecture
We describe the microarchitecture of a PE for spill and a directory that manages acquire/release
requests for atomics. Both require small hardware changes to integrate with a real SDA system.
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Fig. 18. (a) RIPPLE PE microarchitecture (µarch). (b) spill’s µarch has both ibuf and obuf (abv. ib, ob) and
redirects or drains tokens with a FSM and internal state (gray portion). (c) RIPPLE’s µarch components (orange)
added to Riptide’s memory PE (left; e.g., the spill state machine or SSM) and memory subsystem (right).

Microarchitecture for spilling. spill prevents deadlock with on-demand buffering. We propose
a PE for spill borrowing from Riptide’s PE. A PE (Fig. 18a) has a functional unit (FU) and µcore
that communicates data and signals through the network-on-chip (NoC) using a ready/valid
protocol. PEs use dedicated TQs at inputs (i.e., an input buffer or ibuf) for token storage.
The spill PE (Fig. 18b) has an ibuf and obuf (output buffer) to increase TQ space. Once TQs

fill up, spill moves tokens to a backing queue (BQ) in memory, treated as a ring buffer. A state
machine reroutes or drains tokens (from ibuf or BQ). The spill PE requires registers for a pointer
to the BQ (bq), max capacity (mx), head/tail indices (h/t), and a bit, s, to track the state machine.
spill starts in the Buffer ( B ) state, where tokens transfer ibuf→ obuf. If both are full, spill

transitions to Memory ( M ), where tokens route to the BQ and drain from ibuf → BQ→ obuf. In
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M , the PE has two choices (see code in Fig. 18b). It (i) fills the obuf by loading from the BQ (i.e.,
prefetching [76]) or (ii) stores to the BQ if its ibuf is full. spill (i.e., blocks instructions upstream)
if its ibuf saturates while rerouting tokens. Once the BQ is empty, spill moves back to B .

1 def set(addr , atmid , iid) -> bool:
2 if addr in dir: # There's an entry ...
3 if dir[addr].atmid != atmid: ret F # No match
4 elif dir[addr].iid != iid: ret F # No match
5 else: dir[addr].ref += 1 ; ret T # Match!
6 # @param addr isn't set , make a new entry
7 dir[addr] = (atmid , iid , ref=0) ; ret T
8
9 def unset(addr , atmid , iid) -> bool:
10 assert {addr , (atmid , iid , ref=Any)} in dir
11 dir[addr].ref -= 1 # Always decrement
12 if dir[addr].ref == 0: del dir[addr] # Released
13 ret T

Fig. 19. Pseudocode for the set() and unset() API. This API
exposes the dir to acq and rel and also manages its metadata.

Microarchitecture for atomics. RIPPLE
uses a directory (dir), a hardware
memory structure, to manage acquired
addresses and talk with acq and rel us-
ing its API: set() and unset(). Fig. 19
shows pseudocode for each; set() im-
plements req<acq> and unset() im-
plements req<rel>. dir stores a tuple
of metadata per address: <addr, atmid,
ref, iid> to allow aliasing input sets
and atomic instances to pipeline.
The atomic ID (atmid) is a static numbering of an atomic based on source code. It enables an

atomic to safely acquire the same address multiple times if it appears in an input set. set checks for
a matching atmid (L3) if a dir entry exists for addr, indicating an acq of the same static atomic
reserved addr already. Similarly, dir records a reference count (ref) on acquisition (L5-7) so rel
can safely release addr multiple times using unset. ref decrements for each unset() (L11), which
removes the entry for addr when ref is 0 (L12). The language need not force atomics to use
statically differentiable addresses because the directory manages it.

Finally, the directory records an instance ID (iid) per entry, that enumerates dynamic instances
of an atomic. iid disambiguates instances of the same atomic (i.e., atmid) in case two concurrent
instances have identical inputs. Atomicity is violated if multiple instances are allowed to run on
shared inputs, so set blocks a new instance from progressing on an iid mismatch (L4). The iid
enables the same atomic to safely pipeline concurrent instances with high throughput.
Integrating RIPPLE into an existing SDA fabric. RIPPLE’s microarchitectural extensions require
few hardware changes. Fig. 18c shows the changes on Riptide’s SDA fabric in orange. Riptide
features several types of PEs, and RIPPLE leverages Riptide’s memory PE to implement spill, acq,
and rel. The memory PE already supports most of the logic required: spill, acq, and rel reuse the
same load-store FU (LS.FU in Fig. 18c) and datapath to access memory or make set/unset requests.
With spill’s state machine (SSM), registers, and obuf added, the memory PE has similar hardware
complexity to other stateful SDA hardware implemented in prior work, including Riptide’s stream
PE or Softbrain’s memory stream engines [60]. Fig. 18c shows RIPPLE’s directory integrated into
Riptide’s banked memory subsystem, where the memory interface directs set/unset requests.
Each directory bank holds 8 entries; across Riptide’s 8 banks, the directory needs just 1KB total.

7 Methodology
Systems.We compare RIPPLE to Riptide, building a full RIPPLE software stack and modeling both
systems in a simulator. We also evaluate against a sequential von Neumann (vN) architecture
(modeling 1 instruction per cycle or IPC) on performance and program size metrics. The vN
system is modeled by directly executing LLVM-IR instructions. We count arithmetic, memory, and
branching instructions but exclude all others (e.g., 𝜙-nodes) for a fairer comparison to the SDAs.
Compiler. Compilers for all systems use LLVM 14 [48] and apply -Oz to reduce code size.
Architectural simulator.We evaluate RIPPLE and Riptide using an in-house, event-driven dataflow
simulator that directly executes DFGs.
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Modeling RIPTIDE: The simulator accurately models Riptide’s SDA fabric, including pipelined
PE execution, bufferless NoC, and instruction timing. Each PE is assigned one instruction that it
executes for the duration of the program; the SDA does not support dynamic time-multiplexing [63].
We assume DFGs successfully map as one unit and hence do not model fabric reconfiguration. In
fairness to Riptide, the simulator implements ibufs for instruction inputs at each PE (4 slots per
ibuf) — follow-on work to Riptide found that input buffers improved performance with small
hardware overheads [73]. Any token transferring between buffers (e.g., from a spill’s obuf to its
consumer’s ibuf) incurs a 1-cycle delay. Simulation of Riptide in its original configuration (i.e.,
with obufs) was within 10% of its RTL execution cycles reported in [33] on two sample programs
(bfs and dense matrix-vector multiplication).

Modeling arithmetic and control-flow instructions: Arithmetic instructions have 1-cycle latency.
We simulate control flow for Riptide with 0-cycle latency and no buffering. This models Riptide’s
combinational control-flow-in-NoC (CFiN) technique, wherein bufferless NoC routers perform
control flow with no delay for better performance (e.g., over control flow on PEs). We empirically
confirmed Riptide’s findings that it performs better with CFiN.
Modeling RIPPLE: We run RIPPLE programs using the RIPPLE microarchitecture that extends the

Riptide fabric (Sec. 6.2). Simulation is identical to Riptide apart from control flow. RIPPLE executes
most control flow on a PE because it prefers buffering for better throughput and pipelining. RIPPLE
only executes reduction trees (e.g., for atomics or accumulators) combinationally, where latency
is more critical than throughput. arb and queue instructions have 1-cycle latency, and spill has
1-cycle latency when it only drains from its hardware queue (i.e., the Buffer state).

Modeling memory: loads, stores, and spills talk to a single-level, 8-way banked memory (e.g.,
like Riptide’s hardware). Each bank queues memory requests and processes one per cycle with
1-cycle latency; bank conflicts can increase latency. RIPPLE’s dir is also 8-way banked, with 8 entries
per bank (as in Sec. 6.2). dir has two request queues for set and unset. Each dir bank runs one
set() and one unset() per cycle with 1-cycle latency each.
Applications.We evaluate RIPPLE on nine workloads in graph analytics and linear algebra, demon-
strating that SDAs can efficiently support irregular code. By contrast, Riptide was evaluated on
workloads with simple dependencies (e.g., dense linear algebra). Our irregular workloads highlight
the dataflow abstraction inversion problem solved by RIPPLE.
Breadth-first search (bfs) is Fig. 3 and Fig. 9. Topological sort (ts) partially orders nodes of a

directed acyclic graph. K-core decomposition (kc) produces a maximal induced subgraph, 𝑆 , s.t.
𝑑𝑒𝑔(𝑣) ≥ 𝐾, ∀ 𝑣 ∈ |𝑉𝑆 | (𝐾 = 128). Connected components (cc) assigns components to vertices via
label propagation. Single-source shortest path (sssp) finds the shortest path from a source to all
vertices. PageRank-Delta (prd) [53] ranks vertices, only refining ranks that change > 𝛿 in each step.
Matrix addition (ma) performs a weighted sum of sparse matrices (dense output). Stencil (st) is a
2D, 5-point stencil using the Jacobi method (iters = 100). Finally, we evaluate Dense matrix-vector
multiplication (dmv) to cover workloads that SDAs like Riptide already accelerate well.

RIPPLE and Riptide (i.e., C) implement the same algorithm for each program. Graph workloads
follow data-driven, iterative algorithms with high parallelism and fast convergence properties [26,
36, 46, 52, 88]. We use push-style updates [11]. ma and st are derived from Polybench [89].
Inputs.Workloads were evaluated on two synthetic or real-world inputs each (Table 1). Inputs
range in size and cover different structures (e.g. uniform v. power-law graphs).

8 Evaluation
We evaluate RIPPLE and show that it improves performance, IPC, performance-per-area, and shrinks
program size over Riptide, a state-of-the-art, general-purpose ordered dataflow architecture.
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App(s) Graph |𝑉 | |𝐸| 𝑑𝑎𝑣𝑔 𝑑𝑚𝑎𝑥

[bfs, kc,
cc, sssp]

KR kron_g500-logn17 131K 5.1M 78 30K
CA roadNet-CA 2M 2.8M 2.8 12

prd WG web-Google 916K 5.1M 11.1 6.4K
WS web-Stanford 282K 2.3M 16.4 38.6K

ts DL DAG:Linux.call 320K 1.1M 7.2 80K
DS DAG:Synthetic 1M 4.4M 8.4 24

App Matrix (𝑛 × 𝑛) 𝑛 Structure

ma S0 Random-Sp-0 214 Sparse (𝑛𝑛𝑧𝑎𝑣𝑔 : 16)
S1 Random-Sp-1 214 Sparse (𝑛𝑛𝑧𝑎𝑣𝑔 : 512)

st SM Small-Grid 28 Dense
LG Large-Grid 29 Dense

dmv D0 Random-D-0 211 Dense
D1 Random-D-1 212 Dense

Table 1. Inputs. Real inputs are fetched from SuiteSparse [45] (KR [6]; CA, WG, WS from [50]; DL is the SCC-DAG
of [75]). DS is the SCC-DAG of a random Erdős-Réyni graph [20, 29]. S0, S1, D0, and D1 are random, uniform
matrices. SM and LG are dense grids produced by Polybench. sssp adds random weights in [1, 128] to inputs.

8.1 Performance and resource utilization
RIPPLE is fast. Fig. 20 shows RIPPLE’s and Riptide’s speedups over the vN baseline. Both RIPPLE and
Riptide significantly outperform the sequential baseline by leveraging dataflow execution to extract
high ILP (gmean 14.2× and 4.7×, respectively). Crucially, asynchronous tasks allow RIPPLE to unlock
parallelism that Riptide cannot exploit from C, amounting to gmean 3× speedup over Riptide.
Queue operations are performance-critical in many irregular programs, and RIPPLE’s async iterators
and atomics make these fast by eliminating software queues and memory ordering. They pipeline

Seq vN (IPC=1) Riptide Ripple

bf
s.

C
A

bf
s.

K
R

ts
.D

L

ts
.D

S

kc
.C

A

kc
.K

R

cc
.C

A

cc
.K

R

ss
sp

.C
A

ss
sp

.K
R

pr
d.

W
S

pr
d.

W
G

m
a.

S
0

m
a.

S
1

st
.S

M

st
.L

G

dm
v.

D
0

dm
v.

D
1

g
m

ea
n

0

5

10

15

20

S
p

ee
du

p
(v

.
S

eq
vN

)

2.
8×

9.
3×

3.
3×

9.
1×

3.
0×

12
.7
×

3.
0×

12
.6
×

3.
2×

8.
9×

2.
8×

11
.3
×

3.
0×

7.
7×

2.
5×

18
.5
×

3.
4×

13
.7
×

3.
2×

11
.6
×

3.
1×

10
.9
×

3.
1×

10
.5
×

4.
7×

16
.2
×

4.
6×

15
.8
×

27
.4
×

69
.1
×

27
.6
×

69
.2
×

11
.0
×

11
.0
×

11
.0
×

11
.0
×

4.
7×

14
.2
×

Fig. 20. Speedup ofRIPPLE and Riptide over a sequential vonNeumann (vN) baseline (IPC=1) on all applications.
RIPPLE is faster than Riptide by gmean 3× and the vN baseline by gmean 14.2×.
better than Riptide, accounting for most of the speedup. For example, RIPPLE’s cc sees a massive
7.3× speedup over Riptide on the power-law graph KR because queueing and atomic updates for
label propagation are on the critical path. ma shows the benefit of RIPPLE avoiding serialization
on independent, pipelineable asyncs, while Riptide is forced to conservatively serialize ma’s
computation (which additionally disrupts pipelining), leading to RIPPLE’s 3.5× advantage. RIPPLE is
on-par with Riptide’s performance in its best domain: dense linear algebra. Riptide’s compiler
extracts maximal pipeline parallelism from dmv’s simple loop nest to produce a feed-forward DFG
with no memory ordering, leading to a 11× improvement over the vN baseline. RIPPLE performs
just as well; however, expressing dmv’s computation with asyncs offers little advantage because
affine loops already express dmv’s parallelism well.
RIPPLE massively improves resource usage.While RIPPLE programs enjoy fewer total (static)
instructions, they execute substantiallymore IPC than Riptide. Fig. 21 plots IPC (split by instruction
type), measured as number of PE firings divided by execution time. RIPPLE improves IPC by gmean
58% and routinely achieves >10 IPC on smaller programs.

RIPPLE eliminates parallelism-killing artificial dependences to achieve high IPC. It executes more
computational (arithmetic and memory) operations each cycle than the SDA baseline, which instead
spends most of its time on control operations. Asynchronous tasks translate to better pipelining
and high ILP. arb and spill often execute on every cycle, indicating high task throughput. st helps
illustrate the effect of memory ordering instructions. Both Riptide and RIPPLE have high IPC, but
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Fig. 21. IPC split by operator type. RIPPLE improves IPC on all applications (by gmean 58%) over Riptide.

Riptide wastes cycles on memory ordering. RIPPLE updates data rows in parallel (using red-black
coloring), leading to its 2× memory IPC. RIPPLE implements a coarse-grain pipeline for dmv that
compiles to the same DFG as from C, allowing RIPPLE and Riptide to achieve the same IPC on dmv.
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Fig. 22. Utilization of RIPPLE (orange) vs. Riptide (teal). RIPPLE shows higher utilization by eliminating control-
flow bottlenecks while improving concurrency via tasks.

Fig. 22 shows utilization, defined as the IPC divided by program size (i.e. number of DFG nodes).
RIPPLE’s high utilization on irregular workloads (often 30-40%) showcases its unique ability to
improve parallelism while requiring fewer static instructions. prd is an exception; much of its time
is spent in a computationally intensive loop for each vertex that updates residuals. Nonetheless,
RIPPLE almost triples its utilization against the baseline. Reducing control flow is key to utilization
gains, as RIPPLE requires fewer resources to run a program while still performing with higher IPC.
RIPPLE and Riptide both perfectly pipeline dmv, allowing near 100% utilization.
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Fig. 23. Performance-per-area gains of RIPPLE over Rip-
tide, with a gmean 5.8× improvement.

Improved resource usage coupledwith small
programs translates to high area-normal-
ized performance for RIPPLE. Fig. 23 shows
gains in performance-per-area – execution time
divided by program size – for RIPPLE over Rip-
tide. We use DFG size as a proxy for physical
area consumption. RIPPLE improves by gmean
5.8× through reduced resource usage (smaller
DFGs) and large speedups (more parallelism).

8.2 Characterizing RIPPLE programs
RIPPLE produces small programs. RIPPLE reduces program size by gmean 1.9× (and as much
as 3×) over Riptide’s dataflow programs and by gmean 1.4× over the sequential von Neumann
(vN) system, as Fig. 24 shows. Riptide incurs high control flow overhead from excessive memory
ordering and software queueing. vN programs need less control flow than Riptide; branching
requires fewer instructions than steering, and a program counter enforces all ordering by default.
However, vN programs still need many instructions to implement software queueing. RIPPLE tackles
both sources of static instruction overhead by significantly reducing memory ordering (e.g., with
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control-flow-in-NoC (light red). RP shrinks program size by gmean 1.9× over RT and gmean 1.4× over vN.

atomics) and eliminating software queues (with arb and spill). As a result, RIPPLE programs have
far fewer control flow operations over Riptide. ma shows other code size benefits of asynchronous
programming. It does not use a software queue, but RIPPLE shrinks its DFG by splitting it into
independent asyncs that pipeline with atomics. The resulting code has no ordering control flow
across its loops, and no spilling, because its task graph is acyclic. Both RIPPLE and Riptide produce
small, nearly identical DFGs for dmv, as affine loops are easy to express and compile.

8.3 Estimating RIPPLE’s energy costs
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Fig. 25. RIPPLE (orange) reduces dynamic instructions,
shown as a % of Riptide’s execution (teal), by 44% on avg.

RIPPLE’s benefits come without high en-
ergy overheads, and with a decrease in
key sources of energy consumption. We
focus on dynamic instruction count and
memory usage as proxies for energy.
RIPPLE executes fewer dynamic instruc-
tions. RIPPLE reduces dynamic instruc-
tions by 44% on average (Fig. 25). RIPPLE
eliminates the majority of instructions
that implement software queues, which are especially common in graph applications. Additionally,
kc, cc, sssp, and prd implement asynchronous, iterative algorithms that process a vertex many times
(e.g. path relaxation in sssp). These algorithms finish faster when they discover high-degree vertices
more quickly, which can depend on vertex processing order and timing. RIPPLE very quickly discov-
ers vertices in a traversal and aggressively pipelines their processing, leading to faster convergence
and shorter runtimes. Riptide instead serializes discovery and processing.
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Fig. 26. Memory usage of RIPPLE vs. Riptide, split into spilling and non-spilling reads and writes.
RIPPLE incurs modest spilling overheads. Fig. 26 shows total memory operations executed for
each application, and RIPPLE’s bars account for extra spill-induced reads and writes. Spilling to
memory accounts for 7.6% of total memory operations on average in applications that need it.
bfs.CA incurs the highest spill percentage at 18.8% of all memory operations. bfs and ts have
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the highest per-application spill proportion at 9.9% and 9.7%, respectively. Generally, the graph
applications spill more on uniform, high-diameter inputs (e.g. CA). Nevertheless, this tradeoff is a
win for high throughput and performance across all applications.
RIPPLE experiences reasonable but higher memory usage. Fig. 26 also shows that RIPPLE can
increase memory usage, often in iterative, work-inefficient programs. kc.CA and cc.CA execute 66%
and 53% more memory instructions, respectively, with RIPPLE. Suboptimal vertex visiting order (i.e.
work scheduling) coupled with aggressive pipelining degrade work efficiency since more vertices
are revisited than needed compared to Riptide. kc.KR and cc.KR reduce memory usage similar
to their reductions in dynamic instructions with RIPPLE: they discover high-degree vertices and
propagate updates quickly. RIPPLE requires fewer memory instructions for sssp on both inputs,
likely because its traversals differ from kc and cc. These results point to a need for better work
scheduling, either based on priority, rank, or dynamic information [22].
Other factors contribute to higher memory usage. In ts, spilling and slight implementation

differences in bookkeeping of in-degrees come to increase overall memory usage by 6.2%. RIPPLE
executes 14% more memory operations on prd because it aggressively pipelines tasks, causing it to
update residuals of some neighbors that have already converged. prd also reloads data from the
graph on occasion to fetch neighbors; it reduces pipeline bubbles but increases memory usage.

When work efficiency is not in play, RIPPLE has identical memory usage as Riptide. RIPPLE’s bfs
has no memory overheads with spilling since the traversal queues each vertex only once.ma, st, and
dmv also have no change in memory usage since they compute a fixed number of updates. As with
spilling, RIPPLE prefers to trade off reasonable memory overheads for much higher performance.

8.4 Common patterns in RIPPLE code
We identified common patterns and pitfalls from our experience writing applications in RIPPLE.
Expressing different forms of task parallelism.We found that RIPPLE is excellent at expressing
worklist parallelism [65]. async’s queues naturally track outstanding work. Take prd: only outgoing
neighbors of unconverged nodes (rank > 𝛿) need to be refined and pushed back to the work queue.
Users need not iterate through all vertices in each round and poll for convergence.

RIPPLE also expresses DAG parallelism well. End-to-end asynchrony and atomics allow the user
to discover task dependencies (often a DAG) and process them simultaneously. RIPPLE’s ts shows this
pattern; it begins sorting as soon as any zero in-degree node is found, improving concurrency over
the common strategy of computing a task graph and processing it in separate, disjoint stages [38].

Finally, RIPPLE encodes coarse-grain pipelines efficiently. We find that using push as coordination
primitive to split computation leads to a natural pipeline structure. st exhibits this well; we use
push to stagger and trigger updates at row-level granularity in a red-black colored grid. 2

Decoupling reads and writes across asyncs.Many RMWs or atomics in a single async can
hamper performance because of memory ordering. We find that decomposing one async into
multiple often naturally decouples and batches reads and writes with no memory ordering imposed
across asyncs. Instead, we use push as a fence for correctness. The 5-point stencil update in st is
an example; queries are decoupled from updates to the grid.
Correctly using atomic with ind. Correct synchronization is difficult in parallel code, and the use
of atomic is no different. asyncs marked ind add extra complexity because their tasks aggressively
pipeline. Using atomic in the presence of ind is crucial to eliminate races from potentially many
in-flight tasks from the same async. The atomic in bfs (Fig. 9) shows this in practice.

2See Appendix for C and RIPPLE source code for ts and st.
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9 Related Work
RIPPLE builds on prior work in asynchronous dataflow, dataflow languages, and dataflow ISAs.

9.1 Programming for SDAs
Sec. 2 outlined the pitfalls of SDA compilers that extract DFGs from mainstream, sequential code.
Few prior general-purpose languages target SDAs. Prior languages that do require a complete
implementation overhaul, often including both software and hardware changes. We divvy these
languages and SDAs by their parallel programming paradigm.
Implicit asynchronous parallelism. The functional dataflow language Id [4] assumes all code is
implicitly parallel by default. However, functional languages like Id make common computation
idioms difficult to express because they do not support mutable state. Id requires separate hardware
support, called I- and M-structures [5, 9], to enable this common feature. Id also requires several
instructions to launch parallel work on its target dataflow architecture [3].

RIPPLE takes an incremental approach: A few asyncs are enough to inform the compiler about
high-level dataflow semantics in the program. Fine-grain parallelism can be successfully expressed
and extracted by the compiler within an async. Moreover, by starting from common SDA hardware
with shared memory, RIPPLE’s architecture remains simple and efficient.
Data parallelism. Recent SDAs like Plasticine [67] and SGMF [84] exploit massive fine-grained
data parallelism replicated across onto large fabrics. They are programmed with data-parallel code:
SGMF uses CUDA while Plasticine implements parallel patterns from the Spatial language [44].
While highly performant on regular code, users must morph iterative, irregular applications into
map-reduce blocks that can underutilize the SDA’s feed-forward pipeline stages [67]. Consequently,
subsequent work continually adds language features and hardware to support workloads from
other application domains [69, 70, 83, 85] (e.g., dMT-CGRA’s message passing in CUDA threads).

RIPPLE, instead, starts from a point of generality and adds asynchronous communication to the
language because it best models dataflow execution and SDA hardware; only few hardware changes
are needed to achieve high performance and small programs.
Structured pipeline parallelism.Many SDA-adjacent systems target code decomposed into coarse-
grain pipeline stages; StreamIt [79] and Raw [86] are archetypes of this model. StreamIt efficiently
implements streaming programs as coarse-grained pipelines with FIFO communication. Raw
supports StreamIt programs on a distributed architecture of many scalar cores. StreamIt and Raw
do not support fine-grained dataflow execution like RIPPLE and other SDAs (they support message
passing between cores). However, they analyze and optimize pipelines using the synchronous
dataflowmodel [49], which restricts the structure of StreamIt pipelines. All pipeline stages, feedback
loops, and asynchronous messaging channels [80] must exhibit statically analyzable bounds.
Ultimately, structured pipelines are unable to express arbitrary, asynchronous communication

that governs dataflow firing and application-level dataflow behavior seen in irregular code like
bfs. RIPPLE, instead supports arbitrary, unrestricted communication between asyncs, and can easily
encode general pipelines and feedback loops without deadlock.

9.2 Conventional asynchronous and task-parallel languages
Message passing [19, 74], actor [24, 51], coordination [13], and task-parallel [12, 16, 18, 28, 47, 78]
languages provide primitives that share core features of asynchronous dataflow programming and
RIPPLE. For instance, MPI implements explicit asynchronous communication while Cilk supports
asynchronous thread launch. Galois supports iterative execution, go offers first-class FIFO channels,
and Habanero-Java (HJ) provides its own async and data-driven tasks.
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So, what sets RIPPLE apart?A parallel language should enable programmers to express the
kind of parallelism efficiently supported by the target architecture. For instance, CUDA forces
programmers to write data-parallel programs, which yields high parallelism on GPUs. Likewise,
RIPPLE’s asynchronous iterators express exactly the parallel semantics supported by SDAs. As a
result, RIPPLE programs map efficiently to dataflow hardware by construction. This is the key to
RIPPLE’s benefits: high pipeline parallelism and small programs, and no software runtime. Other
languages do not map efficiently because they target conventional multicores or distributed systems,
and they consequently express parallelism that does not map one-to-one to SDA hardware.

go and Cilk are languages that may impose too little or too much structure in task communication,
respectively. In particular, go lacks structure in channel manipulation to effectively represent SDA
queues; channels can be created and destroyed arbitrarily, drained imperatively, and passed by
reference. SDA queues always accept and dispatch tokens automatically, which requires only a
simple primitive to push data to a queue; the rest of its functionality is automatic in RIPPLE. On the
other hand, Cilk imposes too much structure in task communication, requiring parent-child task
joining. In RIPPLE, tasks can communicate arbitrarily, which maximizes asynchrony.
In addition, Galois and HJ support parallel execution models unfit for SDAs. Galois iterators

support speculative, transactional worklist parallelism, where worklist data structures can be pro-
grammatically defined. HJ supports data-driven tasks, but at the wrong granularity; the programmer
must stitch together all dataflow behavior explicitly with futures and async-await statements
for each computational step. By contrast, RIPPLE features pipeline-parallel, asynchronous iterators
amenable to dataflow execution on SDAs. RIPPLE programmers only need to specify coarse-grained
asynchronous communication, and RIPPLE relies on the compiler to extract fine-grained dataflow
parallelism, obviating the need for a future for each value.

Finally, due to the mismatch between language and architecture, these languages require complex
software runtime systems to effectively extract parallelism. RIPPLE does not need one because it
directly maps asynchronous dataflow parallelism to SDA hardware exposed by RIPPLE’s ISA.

9.3 SDAs for irregular workloads
Few SDAs directly optimize for irregular code through hardware changes. UE-CGRA [81] identified
underutilization with irregular code on spatial hardware. However, they apply VLSI techniques
to accelerate only inner loops. Several SDAs optimize sparse tensor code via specialized tensor
iteration [23, 69, 73] or efficient near-data spatial computation [40]. However, these SDAs need
extra hardware and data-parallel expression of sparse computation (e.g., parfor); this diverges from
RIPPLE’s approach and goals (as discussed with data-parallel SDAs in Sec. 9.1). Fifer [55] is a high-
performance SDA that targets decoupled irregular code [56] to hide long-latencymemory operations
through aggressive pipelining. However, Fifer does not support arbitrary cyclic dependencies. RIPPLE
and Fifer also differ in their approaches and goals: Fifer adds massive task queues between pipeline
stages that ensures ample work to hide memory latency. By contrast, RIPPLE solves the abstraction
inversion problem to make better use of existing hardware queues, without modification.

10 Conclusion
This paper presents RIPPLE, a language and spatial dataflow architecture that implements the asyn-
chronous dataflow programming model. RIPPLE explicitly encodes and maps high-level asynchrony,
pipelining, and queueing semantics in irregular computation to an efficient dataflow representation.
RIPPLE eliminates control-flow and memory ordering bottlenecks that plague DFGs extracted from
sequential code by preserving dataflow semantics down the hardware-software stack. On important
irregular workloads, and over a state-of-the-art SDA, RIPPLE improves performance by gmean 3×,
reduces DFG size by nearly half, improves IPC, and slashes dynamic instructions.
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A Appendix
Fig. A1 lists reference C and RIPPLE code for two workloads we evaluate, Topological sort (ts)
and Stencil (st), that demonstrate how RIPPLE expresses different kinds of parallelism. RIPPLE’s
implementation of ts exploits dynamic task parallelism, where the DAG task graph is discovered and
processed simultaneously (in Init and Sort, respectively). RIPPLE’s st implementation constructs a
coarse-grained pipeline that exploits red-black coloring of the stencil grid. Rows of red points and
black points are computed concurrently, but staggered for correctness using push.

1. void topsort(u32 N, u32 *sorted,
 u32 *inOfs, u32 *inNbrs, // incoming
 u32 *outOfs, u32 *outNbrs, // outgoing
 u32 *inDegrees, u32 *queue):
 

2. u32 head = 0, tail = 0, sI = 0
3. void push(v): queue[tail++] = v
4. u32 pop(): return queue[head++]
5. bool empty(): return head == tail

6. for (v = 0..N): // find 0-inDeg nodes
7. u32 inDeg = inOfs[v + 1] – inOfs[v]
8. if (!inDeg): push(v)
9. else: inDegrees[v] = inDeg 

10. while (!empty()): // sort
11. u32 v = pop(), sorted[sI++] = v
12. for (i = outOfs[v]..outOfs[v + 1]):
13. u32 out = outNbrs[i]
14. if (!--inDegrees[out]):
15. push(nb)

1. def topsort(u32 N, u32 *sorted,
    u32 *inOfs, u32 *inNbrs, // incoming
    u32 *outOfs, u32 *outNbrs, // outgoing
    i32 *inDegrees):
 

2. async Init(): // find 0-inDeg nodes
3. for (v = 0..N):
4. u32 inDeg = inOfs[v + 1] – inOfs[v]
5.   // Atomic add to inDegrees allows 
6.     // Init to discover work *and* Sort 
7.     // to process tasks concurrently.
8. atomic<i32*>(&inDegrees[v]):
9. inDegrees[v] += inDeg;
10. if (!--inDegrees[v]):
11. Sort.push(v)

10. async Sort(u32 v) ind:
11. Record.push(v)
12. for (i = outOfs[v]..outOfs[v + 1]):
13. u32 out = outNbrs[i]
14. atomic<i32*>(&inDegrees[out]):
15. if (!--inDegrees[out]):
16. Sort.push(out)

17. async Record(u32 v):
18.  static u32 sI = 0
19.  sorted[sI++] = v

1. void stencil(u32 n, u32 steps
    f32 A[n][n], f32 B[n][n], f32 α):

2.   for (0..steps):
3.     // Memory ordering on A and B 
4.     // spans the entire loop nest.
5.     for (i = 1..n - 1):
6.       for (j = 1..n - 1): // compute B from A
7.         B[i][j] = α * (A[i][j] + A[i - 1][j] +
8.           A[i + 1][j] + A[i][j – 1] + A[i][i + 1)

9.     for (i = 1..n - 1):
10       for (j = 1..n - 1): // compute A from B
11.        A[i][j] = α * (B[i][j] + B[i - 1][j] +
12.          B[i + 1][j] + B[i][j – 1] + B[i][i + 1)

1. const DEPTH = 3 // 5-point pattern spans 3 rows
2. def stencil(u32 n, u32 steps, f32 A[n][n], f32 α):
3.   async GenRedRows():
4.     for (0..steps * 2):
5.       for (redRow = 1..n - 1):
6.         ProcessRed.push(redRow)

7.   async ProcessRed(u32 i):
8.     // Compute red cells of row i
9.     for (j = ((i % 2) + 1)..n – 1; j += 2):
10.      f32 sum = α * (A[i][j] + A[i - 1][j] +
11.        A[i + 1][j] + A[i][j – 1] + A[i][j + 1])
12.      WriteRed.push(i, j, sum)

13.  async WriteRed(u32 i, u32 j, f32 sum):
14.    // Writes and reads are decoupled to remove 
15.    // unnecessary memory ordering. Instead of 
16.    // atomics, push coordinates the pipeline.
17.    A[i][j] = sum;
18.    GenBlackRow.push(i, j)

19.  async GenBlackRow(u32 redRow, u32 col):
20.    // At the start of a red row (col <= 2), 
21.    // a black row DEPTH=3 rows behind is ready.
22.    if (col <= 2):
23.      u32 blackRow = (redRow – DEPTH + n) % n
24.      ProcessBlack.push(blackRow)

25.  async ProcessBlack(u32 i):
26.    // Compute black cells of row i
27.    for (j = (!(i % 2) + 1)..n – 1; j += 2):
28.      f32 sum = α * (A[i][j] + A[i - 1][j] +
29.        A[i + 1][j] + A[i][j – 1] + A[i][j + 1])
30.      WriteBlack.push(i, j, sum)

31.  async WriteBlack(u32 i, u32 j, f32 sum):
32.    A[i][j] = sum;

Fig. A1. Abridged reference C and RIPPLE code for Topological sort (left) and Stencil (right).
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