
NUPEA: Optimizing Critical Loads on Spatial Dataflow
Architectures via Non-Uniform Processing-Element Access

Souradip Ghosh
Efficient Computer
Pittsburgh, PA, USA

souradip@efficient.computer

Graham Gobieski
Efficient Computer
Pittsburgh, PA, USA

graham@efficient.computer

Keyi Zhang
Efficient Computer
San Jose, CA, USA

keyi@efficient.computer

Brandon Lucia
Efficient Computer
Pittsburgh, PA, USA

blucia@efficient.computer

Nathan Beckmann
Efficient Computer
Pittsburgh, PA, USA

beckmann@efficient.computer

Tony Nowatzki
Efficient Computer

Los Angeles, CA, USA
tony@efficient.computer

Abstract
Data movement is the dominant energy, performance, and scala-
bility bottleneck in modern architectures. Systems have tackled
data movement by distributing data, e.g., via non-uniform memory
access (NUMA) architectures. However, to reduce data movement,
these architectures must identify critical data and place it closer to
compute. Clever data placement is complex and often ineffective.

Spatial dataflow architectures (SDAs) present a new opportunity
to tackle data movement. SDAs distribute program instructions
across a spatial fabric of processing elements (PEs). On large SDAs,
some PEs are necessarily closer to memory than others, giving rise
to non-uniform processing-element access (NUPEA). Clever instruc-
tion placement can thus reduce data movement by, e.g., placing
critical loads close to memory.

This paper introduces NUPEA and contrasts it with prior data-
centric approaches to scaling data movement.We find that it is often
easier for the compiler to identify critical loads than the data they
access, making NUPEA applicable where NUMA is not. We present
simple architecture and compiler optimizations for NUPEA and
implement them on theMonaco SDA architecture and effcc compiler,
both industry products by Efficient Computer. On Monaco, across
a range of important kernels, NUPEA yields an avg 28% speedup
over a uniform-PE-access (UPEA) SDA and an avg 20% speed over
a UPEA SDA with NUMA.

CCS Concepts
• Computer systems organization → Parallel architectures; •
Software and its engineering→ Dataflow architectures.

Keywords
spatial dataflow architecture, data movement

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’25, June 21–25, 2025, Tokyo, Japan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1261-6/2025/06
https://doi.org/10.1145/3695053.3731061

ACM Reference Format:
Souradip Ghosh, Graham Gobieski, Keyi Zhang, Brandon Lucia, Nathan
Beckmann, Tony Nowatzki. 2025. NUPEA: Optimizing Critical Loads on
Spatial DataflowArchitectures via Non-Uniform Processing-Element Access.
In Proceedings of the 52nd Annual International Symposium on Computer
Architecture (ISCA ’25), June 21–25, 2025, Tokyo, Japan. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3695053.3731061

…

…

C DFG PnR

effcc

12 x 12
NUPEA
Fabric

Monaco

LD

Critical!

Figure 1: effcc and Monaco: a NUPEA-aware dataflow compiler and
NUPEA SDA.Monaco implements domains of PEs with non-uniform
memory-access latency that enable high performance and scalability.
effcc identifies critical loads and prioritizes them onto fast NUPEA
domains during PnR. Monaco’s fabric-memory network (FMNoC)
routes data from PEs to memory.

1 Introduction

Data movement is the dominant bottleneck in parallel sys-
tems. As global communication gets increasingly expensive,

architectures must keep most communication local to scale. This
imperative motivates non-uniform memory access (NUMA) archi-
tectures, where data is distributed throughout the design so that at
least some data is local to every processor.

Unfortunately, NUMA requires clever data placement to yield
benefits, and good data placement is difficult or even impossible.
NUMA architectures must identify data that are frequently accessed
by particular threads and then move that data near those threads.
Placing data in software is challenging, often requiring language
support [19]. Placing data in hardware (e.g., via private caches [35]
or non-uniform cache access [40] architectures) adds significant
complexity. Moreover, NUMA does not benefit widely shared data,

https://orcid.org/0000-0002-0656-4726
https://orcid.org/0009-0005-5408-120X
https://orcid.org/0000-0002-8902-2518
https://orcid.org/0000-0003-4130-1099
https://orcid.org/0000-0001-6301-714X
https://orcid.org/0000-0001-8483-3824
https://doi.org/10.1145/3695053.3731061
https://doi.org/10.1145/3695053.3731061

ISCA ’25, June 21–25, 2025, Tokyo, Japan Souradip Ghosh, Graham Gobieski, Keyi Zhang, Brandon Lucia, Nathan Beckmann, and Tony Nowatzki

for which no single placement suffices, or large data sets, which
do not fit in a single NUMA domain. Thus, although NUMA is the
dominant approach to scale communication in modern systems, it
is often ineffective at keeping communication local.

This paper explores scaling in the context of spatial dataflow
architectures (SDAs), exploiting a new opportunity introduced by
these architectures to scale memory access while avoiding the limi-
tations of NUMA (Fig. 1). SDAs are an emerging class of “general-
purpose accelerator” that comprise a fabric of simple processing
elements (PEs) interconnected by a network on-chip (NoC). An
SDA represents a program as a dataflow graph of instructions with
edges for data dependencies. The compiler performs place-and-
route (PnR), placing instructions onto PEs and routing communica-
tion over the NoC.

SDAs are highly sensitive to the latency and energy of commu-
nication between PEs. As SDAs scale, the cost of communication
across the fabric becomes highly heterogeneous: communication
between adjacent PEs is easily 10× faster than across the full fabric.
The compiler keeps communication local by placing frequently
communicating instructions on nearby PEs.

Insight. Our key observation is that, for the same fundamental
reasons that motivate NUMA and heterogeneous PE-to-PE latency,
some processing elements are necessarily closer to memory than others.
Although it is impossible to build an architecture where memory is
close to every PE, it is possible to build one where memory is close
to some PEs (Fig. 1).

And unlike conventional multicores, it is natural in an SDA
to place particular instructions at an advantageous location. In a
multicore, each processor is time-multiplexed by many instructions,
dynamically scheduled by the microarchitecture. There is thus little
opportunity in a multicore to identify critical instructions and place
them advantageously.

By contrast, SDA compilers already place instructions to optimize
communication. It is a short leap to place critical loads — that is,
loads on a program’s critical path where any additional delay will
slow down execution (e.g., on the recurrence of a loop) — closer to
memory. Moreover, in contrast to the difficulty of identifying and
partitioning data in NUMA systems, it is often easy for compilers to
identify critical loads.

Our solution: Non-uniform processing-element access (NU-
PEA). SDAs should architecturally expose the non-uniform latency
to memory from different PEs. Doing so allows the compiler to place
critical loads closer to memory, optimizing latency where it matters,
while maintaining high memory bandwidth for latency-insensitive
loads on other PEs.

We evaluate NUPEA on Monaco, a general-purpose SDA that
features a 12×12 heterogeneous fabric of PEs (Fig. 1). PEs are inter-
connected by statically routed, bufferless data NoC, and a subset of
“load-store” (LS) PEs are connected to memory over a hierarchical,
dynamically routed fabric-memory NoC. Memory is banked 32×,
with a shared cache in front. The fabric-memory NoC exposes non-
uniform latency, depending on which LS PE is accessing memory.

The Efficient C Compiler, or effcc, maps programs written in C
ontoMonaco. effcc splits programs into regions that fit onMonaco’s
fabric and automatically parallelizes loop nests to maximize per-
formance. This paper focuses on effcc’s optimization passes to

(i) identify critical loads, specifically those along loop recurrences,
and (ii) preferentially place critical loads in fast NUPEA domains
during place-and-route.

Monaco and effcc are both industry products. Monaco is imple-
mented in a 22nm planar process and is based on a design taped out
in Q1’25. effcc is implemented in MLIR [44] and is general-purpose,
supporting the full C language.

Contributions. This paper contributes the following:
• We introduce NUPEA, a new opportunity to scale commu-
nication in spatial dataflow architectures (SDAs) by placing
instructions, not data.

• We present the design and implementation of NUPEA in the
Monaco SDA.

• We present the design and implementation of NUPEA-aware
optimization passes in the effcc compiler that identify critical
loads and move them closer to memory during place-and-
route (PnR).

• We perform a design space exploration of NUPEA in SDAs
to optimize the placement of load-store PEs within Monaco’s
dataflow fabric.

Results. This paper evaluates NUPEA in simulation on Monaco
using effcc and our internal microarchitectural simulator. NUPEA
outperforms practical alternatives. Monaco performs 28% better
than an SDA with uniform, two-cycle access; 20% better than an
SDA with distributed NUMA memory access; and within 21% of an
idealized SDA with uniform, single-cycle access.

Road map. Sec. 2 discusses existing approaches to scale data move-
ment and motivates NUPEA. Sec. 3 introduces NUPEA and illus-
trates it on sparse matrix-vector product. Sec. 4 describes Monaco,
a representative NUPEA microarchitecture, and Sec. 5 describes
the effcc NUPEA-aware compiler. Sec. 6 presents our evaluation
methodology, and Sec. 7 evaluates NUPEA. Sec. 8 concludes.

2 Background and Motivation
NUPEA is motivated by the poor scalability of data movement. Most
existing systems try to scale by partitioning and placing data closer
to the computation that needs it. SDAs enable a complementary
approach that partitions and places instructions near data they use.

2.1 Data-centric scaling of data movement
Non-uniform memory access (NUMA). NUMA architectures seg-
ment cores and main memory into domains (blue groups in Fig. 2).

Figure 2: A classic NUMA system.

An access to a local domain (green arrow) is faster than to a remote
domain (red arrow). The goal in a NUMA system is to place data in
domains such that most accesses are local.

NUPEA: Optimizing Critical Loads on Spatial Dataflow Architectures via Non-Uniform Processing-Element Access ISCA ’25, June 21–25, 2025, Tokyo, Japan

Fig. 3 shows sparse matrix-vector multiplication (spmspv, our
running example in this paper). spmspv is application that paral-
lelizes well onto a NUMA architecture: each thread performs an
independent sparse inner product. spmspv’s bottleneck is an inter-
section operation (∩, L.6) that finds matching locations of non-zero
values in Ar and V, which are then multiplied and accumulated in a
dot product (L.8-9).

1 parfor r = 0..A.numRows:
2 # Get non-zero (nz) indices of Ar
3 beg = A.rows[r], end = A.rows[r+1]
4 nzIdxA[] = A.nzIdx[beg..end]

5 # Ar ∩ V -> common nz indices
6 nzInBoth[] = nzIdxA ∩ V.nzIdx

7 # Dot-product, write to vector
8 D[r] = sum([A.val[i] * V.val[i]
9 for i in nzInBoth])

Figure 3: Inner-product spmspv. A is in compressed sparse row format
(CSR) and V is sparse. D is dense. ∩ (L.6) is its critical path.

For NUMA to be effective, threads 0–3 on domain D0 in Fig. 2
should have local access to A’s CSR data structure, especially the
data for nzIdxA (L.4-6). However, thread 2 incurs a remote access
that slows down the intersection operation, hurting performance.

A NUMA system speeds up these remote accesses using infor-
mation from a dynamic analysis and operating system (OS) support.
An OS can migrate pages between NUMA domains [15] or schedule
a data-intensive thread close to a memory controller to reduce net-
work traffic [24]. However, many systems simply interleave data
across domains [27]. Interleaving utilizes all available memory ca-
pacity, but places most data remote, sacrificing most of the scaling
potential of NUMA.

Non-uniform cache access (NUCA). NUCA [40] systems distrib-
ute cache banks across the on-chip network, so that each core is
closer to some cache banks than others. Like NUMA, the goal in
NUCA is to place data so that most accesses are to local cache banks.
Compared to NUMA, data migration is more practical in NUCA
due to smaller data sizes and higher natural churn in caches.

Static NUCA [40] simply interleaves addresses across cache ac-
cesses; like interleaved NUMA, Static NUCA incurs global com-
munication for nearly all accesses and scales poorly. By contrast,
Dynamic NUCA techniques respond to cache misses by migrating
data towards the requesting core at the granularity of cache lines
or pages [10, 12, 13, 18, 20, 83]. Dynamic NUCA techniques can be
effective, but add significant complexity [83] and/or rely on fragile
heuristics [33, 55]. Due to these drawbacks, commercial multicores
use Static NUCA despite its poor scalability.

Processing in-memory (PIM). Processing in- or near-memory
architectures offload instructions to execute at or in the mem-
ory [1, 2, 5, 8, 26, 32, 34, 37, 41, 47, 62, 65, 69, 72, 73, 81, 87, 90, 91].
PIM systems generally target applications with poor data reuse,
where caches are ineffective [47]. On these applications, PIM re-
duces the cost for instructions to fetch data, but increases the cost of
communication between instructions. Thus, for PIM to be effective,
most data accessed by a thread (or other unit of offloading) must be
co-located at the same memory bank or vault, just like NUMA [88].

NUPEA is similar to PIM in that both architectures reduce data
movement by placing instructions closer to memory, however NU-
PEA does this without increasing the communication cost between
instructions. This opportunity is unique to SDAs.

Scratchpad memories. Some systems provide distributed scratch-
pads that enable extremely fast and cheap access to local data.
Scratchpads are essentially an extreme version of NUMA: they
shift the burden of data placement from the memory system to the
user [43] or compiler [54], where statically reasoning about data
access semantics is difficult. Moreover, since the scratchpad is not
in the shared address space, data must be statically guaranteed to
only be used by a single thread. For example, spmspv’s accesses
are difficult for a compiler to reason about because of pointer in-
direction through A and V. These drawbacks limit scratchpads to
programs with regular accesses or language-level support [46, 66],
and have been largely unsuccessful on general-purpose processors.

Smart data placement is hard. The above techniques all rely, on
some level, on smart data placement in the compiler to improve
scalability. Data placement is extremely challenging for compilers
on arbitrary code due to the difficulty of statically reasoning about
memory aliasing. Moreover, data placement is generally ineffective
when data are widely shared or too large to fit locally. Most general-
purpose systems instead prefer hardware-managed caches [55].

Private caches offer the ability to place data near relevant com-
pute based on the dynamic access pattern; this adaptability makes
them extremely effective, and thus they are ubiquitous on multi-
cores. However, private caches lower available capacity, risking
a much higher miss rate than a shared cache. Moreover, private
caches require a coherence protocol to arbitrate access to shared
data, adding significant latency, network traffic, and design and
verification complexity.

Private caches also require an abstraction for assigning work to
each cache to effectively use the smaller capacity; this is typically
exposed through a threading model and would be the responsi-
bility of the programmer or an advanced compiler. On spmspv,
private caches can achieve a low miss rate by splitting the rows
of A across caches, provided that V is small enough to fit within
each private cache. If work from the same row of A is spread to
different caches, the same cache line may be loaded multiple times,
increasing the miss rate. Worse, if D[r] is simultaneously written
by multiple threads, coherence requires more global communication
than a simple shared memory system.

Summary. Existing solutions to scale data movement are data-
centric: all attempt to cleverly place data near threads that access
it. To succeed, the data-centric approach requires data to be parti-
tioned across threads, which systems have struggled to do automat-
ically. Data-centric approaches are ineffective where data is widely
shared or an individual thread’s working set is large. NUPEA is a
complementary way to scale data movement that exploits unique
properties of SDAs by taking an instruction-centric approach.

2.2 New opportunities to scale data movement
in SDAs

Spatial dataflow architectures [7, 23, 28–31, 38, 53, 56, 58–61, 64,
66, 68, 70, 71, 74, 76, 82, 84, 85, 93] distribute compute onto an

ISCA ’25, June 21–25, 2025, Tokyo, Japan Souradip Ghosh, Graham Gobieski, Keyi Zhang, Brandon Lucia, Nathan Beckmann, and Tony Nowatzki

array, or fabric, of PEs. PEs are small; each is designed to hold
one or at most a few instructions at a time. A network-on-chip
(NoC) mediates communication between PEs and to/from memory.
Dataflow compilers produce a dataflow graph (DFG) of dependent
instructions that fire asynchronously and communicate directly
with each other [25]. The compiler then place-and-routes (PnR)
instructions onto PEs and dataflow communication into the NoC.

MemLD

(a) 3×3 fabric.

MemLD

= Long latency to/from memory!

(b) Scaled fabric.

Figure 4: Data movement hampers fabric scalability. As fabrics grow
larger, the distance to memory increases, making it impossible for
all PEs to access memory in a single cycle.

Data movement hampers fabric scalability. Fig. 4 demonstrates
the problem. These fabrics have a uniform PE access latency (UPEA)
to memory. In Fig. 4a, the 3 × 3 fabric is small enough that all PEs
are close to memory.

However, as we scale the fabric in Fig. 4b, most PEs get further
and further away from memory. Maintaining uniform PE access
means slowing down all memory accesses. Wire delay and arbitra-
tion complexity make it impossible for all PEs to reach memory
without reducing fabric frequency or taking multiple cycles [53].

In other words, UPEA fabrics suffer from the same fundamental
scalability challenge as multicores (Sec. 2.1), but flipped on its head.
In SDAs, the instructions are distributed, and the challenge is how
to scale their communication with memory.

while iAnz < Aend and iVnz < Vend:
 Ai = nzIdxA[iAnz] # critical

 Vi = V.nzIdx[iVnz]

 if Ai == Vi: sum +=

 A.val[Ai] * V.val[Vi]

 iAnz += 1 if Ai <= Vi
 iVnz += 1 if Vi <= Ai

6 nzInBoth[] = nzIdxA ∩ V.nzIdx
8 D[r] = sum(...) # Dot-product

Figure 5: An implementation of spmspv’s ∩ operation using a stream-
join [23, 36]. nzIdxA[iAnz] is a critical load along the recurrence for
iAnz (red highlights). This load’s latency controls how quickly the
next iteration of the loop can launch.

Spatial dataflow architectures place instructions to reduce
data movement. Unlike conventional cores, which are heavily
time-multiplexed by all instructions in a thread and dynamically
scheduled by hardware, SDA compilers control individual instruc-
tion placement. Communication between distant PEs is expensive
because it requires either multiple cycles (on buffered networks) or
a slower frequency (on bufferless networks). To localize PE commu-
nication, SDA compilers optimize instruction placement during PnR
to place frequently communicating instructions near each other.

It is a small jump for the compiler to also localize fabric-memory
communication for critical memory operations. Take spmspv’s ∩

operation for example, which Fig. 5 implements with an irregu-
lar stream-join loop [23, 36, 42]. The compiler can trivially iden-
tify that variable iAnz controls loop iteration and depends on a
load from nzIdxA through the def-use chain (i.e., operations in
red). By using simple heuristics and leveraging common induction-
variable or loop-recurrence analyses, the compiler can prioritize
data-dependent control flow and place the critical load along iAnz’s
recurrence close to memory. Importantly, the compiler need not
reason about the underlying data to accelerate this critical load and
ensure the next loop iteration launches as quickly as possible. NU-
PEA thus avoids the intractable alias analysis, complex hardware,
and/or software changes required by data-centric approaches.

Prior SDAs do not exploit NUPEA.Most prior SDAs take the
conventional, data-centric approach to scaling data movement.
For example, WaveScalar [76] relies on a traditional multi-level
cache hierarchy for data, and dynamically schedules instructions
to PEs independent of how they access data [77]. Fifer [56] imple-
ments a multi-“core” SDA, where each fabric communicates with
a traditional cache hierarchy. Fifer manages long-latency loads by
rapidly switching between tasks to hide the latency. Similar to Fifer,
SGMF [85] replaces GPU cores with dataflow fabrics, while using
a traditional GPU’s memory hierarchy. SGMF features load-store
PEs on the perimeter of each dataflow fabric but does not exploit
non-uniform fabric-memory communication.

The SDA-adjacent Raw architecture [86] introduces a distributed
register file with non-uniform register access (NURA). Raw’s com-
piler manages both instruction and data placement; it maps explicit
pipeline stages of streaming programs [45, 79] onto its cores and
data onto adjacent register files. Raw relies on compile-time anal-
ysis of memory references and runs into the same limitations as
scratchpads: without language-level support, Raw’s compiler can-
not optimize instruction placement [80].

Tartan [53] breaks programs into hyperblocks and then greedily
places hyperblocks to minimize communication; dependent hyper-
blocks are placed near each other. Tartan collects memory profiles
of hyperblocks and places those that access memory frequently
closer to the memory ports. This is similar to NUPEA, but only at
the hyperblock level. Similar to placing threads on cores, Tartan
must consider an entire block of instructions at a time and cannot
identify and place individual critical loads. The result is more data
movement than necessary and misallocation of some scarce PEs
with fast access to memory. A NUPEA architecture unlocks opti-
mized instruction placement within a hyperblock; the compiler can
collect critical loads in the block and place them in fast domains.

The Versal FPGA [78] includes a hardened NoC, which is used
to provide high-bandwidth access to DRAM or HBM. The Versal
NoC compiler takes as input a dataflow graph of communication
endpoints, along with required bandwidth point-to-point, and per-
forms PnR using optimization-based techniques. The NoC compiler
can thus optimize for placing endpoints with high memory band-
width closer to memory controllers. NoH [39] is an HLS flow for
this NoC that incorporates NoC bandwidth consumption into its
global placement algorithm. However, the critical path cannot be
optimized for in these flows.

Many other SDAs are designed with specialized memory access
hardware and are orthogonal to NUPEA architectures. For instance,

NUPEA: Optimizing Critical Loads on Spatial Dataflow Architectures via Non-Uniform Processing-Element Access ISCA ’25, June 21–25, 2025, Tokyo, Japan

Mem

D0 (0-cycle)D1 (1-cycle)D2 (2-cycle)

Critical + inner-loop loads are fast!

Legend = Arith/CF FU

= Arith/CF inst.
= LS FU
= LS inst.

= Critical LS inst.
= Inner-loop LS inst. = Spatial separation b/w parallel copies of spmspv

Mem

(A) (B)

(C)

UPEA0 UPEA2 NUPEA
0

25

50

75

100

P
er

f.
(%

o
f

U
P

E
A

0
)

Figure 6: (a) spmspv (unrolled 2×) and mapped onto a 6×6 UPEA fabric. (b) Same spmspvmapped onto a 6×6 NUPEA fabric. A NUPEA-aware
PnR places critical and other inner-loop loads in fast NUPEA domains for low fabric-memory latency (D0). (c) Simulated performance of
spmspv on a 212 × 212 random uniform matrix and vector, both with 90% sparsity. NUPEA performs nearly as well as an idealized design with
uniform, 0-cycle memory latency (UPEA0), and 32% better than a practical design with uniform, 2-cycle latency (UPEA2).

stream-dataflow SDAs [60] implement regular, data-parallel pro-
grams with streaming memory units [22, 23, 71, 89]. Plasticine [66]
similarly supports vectorized and pipelined memory accesses via
distributed scratchpads; users must write code and map program
data using parallel patterns that facilitate data placement [43]. Fi-
nally, statically scheduled SDAs and systolic arrays often target
small, regular code. They feature homogeneous memories, statically
known load latencies, and small fabric sizes [38, 51, 52, 75] (similar
to Fig. 4a), which obviates the need for non-uniform access. Some
lean on a co-processor to access memory altogether [31].

3 Non-Uniform Processing-Element Access
NUPEA is a technique to optimize data movement in a spatial
dataflow architecture by exploiting the heterogeneous distance
from PEs to memory. A spatial NUPEA architecture abstracts fabric-
to-memory communication as a NUPEA domain, or a group of
PEs that share the same latency and bandwidth to access memory.
Spatial NUPEA architectures expose domains to a compiler in two
ways: (i) as a property of the fabric topology, where PEs with memory
access are assigned a domain, and (ii) as an ordered set of NUPEA
domains in the architecture, sorted by memory latency/bandwidth.

Fig. 6 illustrates spmspv running on a conventional SDA and an
SDA with NUPEA. Fig. 6a shows a fabric with uniform PE access
(UPEA) latency, and Fig. 6b shows the same fabric with NUPEA.
The NUPEA SDA has three domains, D2 ⪯ D1 ⪯ D0, sorted by
their proximity to memory. D2 is designed with a best-case fabric-
memory latency of 2 cycles, D1 with 1 cycle, and D0 with 0 cycles.

Uniform PE access hurts performance. The UPEA design in
Fig. 6a has a global network for PE-to-memory communication.
This makes the compilers job easier, because it need not reason
about load criticality or memory latency, but it causes performance
to suffer as the fabric scales. The performance impact of uniform
memory latency can be significant. On spmspv, going from a best-
case latency of 0 cycles to 2 cycles — a practical design, given the
levels of arbitration required — degrades performance by 24%.

NUPEA enables optimized placement of critical loads. Exposing
NUPEA domains in the architecture equips the compiler to priori-
tize critical memory instructions for placement in faster NUPEA
domains. In Fig. 6b, the compiler has placed the four critical loads
(part of the ∩ operation in L.6 in Fig. 3) and inner-loop loads of the
dot product (L.8-9) in D0 to achieve best-case memory performance.
With UPEA (Fig. 6a), there is no option to prioritize critical memory
options, subjecting them to worst-case delays.

NUPEA recovers most of the performance of UPEA on spmspv.
By promoting critical loads to the fast domain (D0), NUPEA achieves
99% of the performance of an idealized UPEA baseline with 0-cycle
memory latency for all PEs. Loads in the inner loop of spmspv are
placed in D0. Meanwhile, spmspv tolerates higher latency on the
load from A.rows (L.3 in Fig. 3), which can be placed in slower D1
(green) with little impact on performance. Fast memory access is
only required for critical loads, which can be satisfied by a subset
of PEs in the SDA located “near memory” over the NoC.

NUPEA: A new dimension on which to scale data movement.
NUPEA is an instruction-centric approach to mitigate the rising
cost of data movement in parallel architectures. Unlike prior, data-
centric approaches, NUPEA does not require compilers to identify
critical data or reason about how it will be accessed. Instead, NUPEA
asks compilers to estimate the criticality of loads and exploits the
distributed processing of SDAs to scale communication.

NUPEA unlocks a new dimension to scale data movement. NU-
PEA is applicable where NUMA is ineffective or difficult to im-
plement. We focus particularly on irregular or “general-purpose”
code where it is difficult to statically analyze memory references,
but NUPEA is also advantageous on data sizes that do not fit in a
private cache or single NUMA domain.

This paper focuses on the NUPEA technique and its implementa-
tion in Monaco, which features a single, centralized main memory;
see Sec. 4. Note, however, that NUPEA is complementary to prior
data-centric approaches to scale data movement. One could design
SDAs with non-uniformity in both memory and PE access to further
scale data movement.

ISCA ’25, June 21–25, 2025, Tokyo, Japan Souradip Ghosh, Graham Gobieski, Keyi Zhang, Brandon Lucia, Nathan Beckmann, and Tony Nowatzki

4 The Monaco NUPEA Microarchitecture
Monaco is a spatial dataflow architecture that implements NUPEA
domains. Monaco has a 12×12 fabric of heterogeneous PEs. PEs
can have a variety of functional units (FUs) for arithmetic, control-
flow, and/or memory instructions. Only the subset of PEs with
a memory FU can execute loads and stores. Monaco memory is
banked 32× with a shared, memory-side cache. PEs communicate
with each other over a statically routed, bufferless data NoC. PEs talk
to memory over a dynamic, multi-stage NoC that arbitrates requests
to memory ports. This section details the Monaco microarchitecture
with a focus on its NUPEA domains and implementation of the
fabric-memory NoC.

4.1 Monaco’s dataflow model
Instruction set.Monaco supports a general-purpose dataflow in-
struction set covering common arithmetic instructions, loads, and
stores (similar to [11, 17, 25, 29]). Unlike branching in traditional
von Neumann architectures, Monaco implements steering control
(𝜙−1) [16, 21, 25, 29, 76] that converts control dependencies into
data dependencies. Steer instructions explicitly route data values
to dependent instructions when they need them.

Execution model.Monaco employs the dataflow execution model,
where an instruction fires once all of its input data (tokens) ar-
rive [25]; there is no program counter. Independent instructions can
fire in parallel. Specifically, Monaco implements ordered dataflow,
where tokens are kept in FIFO buffers and execute in-order [29, 53,
66, 74, 93]. Ordered dataflow saves energy and reduces hardware
complexity over out-of-order, tagged dataflow [58, 63]. Monaco’s
fabric executes one bitstream at a time. A bitstream describes which
PEs are active, which instruction runs on each PE, and which routes
are active in the data NoC.

…

in

µcfg

µcore

Arith

Tile-Specific FU
(Arith/LS)

Configuration
Cache

Data Tracks

FUs

CF

o
u
t

Data NoC
Router

XD

Figure 7: Monaco PE microarchitecture. Each PE has an arithmetic
FU, control-flow FU (CF), and an FU to hold program arguments
(xdata or XD). Half of Monaco’s PEs have an additional arithmetic
FU, the other half has an additional LS FU.

PE microarchitecture. Fig. 7 shows the microarchitecture of a PE.
PEs load instructions from its bitstream configuration cache, con-
trolled by the µcfg on the tile. A PE communicates with the data NoC
through its µcore. PEs buffer tokens at its inputs for each instruction
operand for better instruction pipelining [74]. Control FUs are an

exception: they omit input buffers and run combinationally [11].
Monaco’s PEs do not time-multiplex instructions; rather, each PE
runs one instruction for the duration of a bitstream’s execution.

Data NoC. PEs communicate tokens through a bufferless, statically
routed mesh network. The data NoC connects each tile to 3 separate
tracks (each 32-bit wide) to ensure enough routing capacity between
PEs. Monaco has one cardinal track, one diagonal track, and one
skip track — diagonal and skip tracks only go through a router
every other hop, requiring 5 tracks at each edge of the tile for the 3
tracks at each router. Routers adopt a Wilton topology [49].

4.2 Monaco’s NUPEA fabric
Monaco has a large, 12×12 fabric of heterogeneous PEs. Fig. 8 shows
the Monaco fabric, data NoC, and fabric-memory NoC. Monaco’s
fabric lays out compute such that each row alternates between
arithmetic-only PEs and load-store (LS) PEs. Half of Monaco’s PEs
(72) are LS PEs (i.e., they contain a memory FU), which helps to
support large programs. The LS PEs also contain simple arithmetic
FUs, allowing them to execute basic integer instructions as needed.

AX
I C

ro
ss

ba
r à

 M
em

or
y

D0D1D2D3

Fa
br

ic
-M

em
or

y
A

rb
itr

at
io

n
N

et
w

or
k

Data NoC Fabric-Mem Arbiter LS FU Arith FU Basic FU

Figure 8: Monaco’s spatial dataflow fabric.

Clock divider.Monaco has two clocks: system and fabric. PEs
execute on the fabric clock, which is divided down from the system
clock. Monaco provides a configurable clock divider for the fabric
clock, which is set dynamically when a bitstream is loaded. The
clock divider ensures that the fabric can meet timing constraints:
the data NoC is bufferless, so the fabric clock must cover the longest
path between PEs in each bitstream. The compiler performs static
timing analysis and optimization during PnR to minimize the clock
divider (i.e., maximize frequency).

While the fabric may run at a lower frequency, the rest of the
system, including memory and the fabric-memory NoC, run at a
fixed frequency. Thus, there is a ratiosynchronous clock-domain
crossing in LS tiles between the fabric and memory.

NUPEA: Optimizing Critical Loads on Spatial Dataflow Architectures via Non-Uniform Processing-Element Access ISCA ’25, June 21–25, 2025, Tokyo, Japan

M
em

LS LS LSLSLS LS LS LS LS LS LS LS

L

L

S

L

L

S

D1 D0D2D3

Input Buf.
A
R
B

L

Request A
R
B

A
R
B

Figure 9: Fabric-memory network with arbitration. LS PEs route memory requests to memory through this network.

NUPEA domains.Monaco features four NUPEA domains to seg-
ment its LS PEs by levels of non-uniform access. The domains are
organized by their proximity to memory (on the right side of Fig. 8)
in the order D3 ⪯ D2 ⪯ D1 ⪯ D0. Each domain (except the last)
covers multiple columns of LS PEs.

Fabric-memory NoC. LS PEs connect to the fabric-memory NoC
that routes requests and responses to and from memory. The net-
work is disaggregated across the rows of LS PEs, with each slice
of the network managing only its row (e.g., see the second row of
LS PEs in Fig. 8 and the arbitration beneath it). Fig. 9 zooms in on
one row of LS PEs connected to its slice of the fabric-memory NoC.
Monaco splits the network into two (with identical topologies), one
for fabric-to-memory requests and one for data responses back;
Fig. 9 shows the request network.

Arbiters are also organized by row and domain: there is one
for each domain per row apart from D0, which has no arbiters (a
special case we discuss below). Arbiters are placed in the column
closest to memory in each domain.

To enable NUPEA, arbiters are arranged hierarchically as an
imbalanced tree with a fanout of 4; each arbiter is connected down-
stream to the arbiter in the next-closest NUPEA domain (towards
memory). Arbiters are flopped to break up the critical path across
arbitration stages, so that each domain adds a cycle of latency. Arbi-
tration in the fabric-memory NoC runs on the system clock, which
is faster than the fabric clock, hiding some of this delay.

Upon a load or store, an LS PE sends a request to its local arbiter.
An arbiter chooses a request to forward upstream (to the next
arbiter or to memory) in round-robin fashion, and so on, until the
request reaches a memory port.

High bandwidth in fast NUPEA domains. The fabric-memory
NoC is disconnected from LS PEs in the first NUPEA domain, D0.
Instead, each of D0’s LS PEs connect directly to a memory port
(as shown in Fig. 9). This design enables high bandwidth in the
low-latency D0 domain, freeing critical instructions up from any
delays due to arbitration. The rest of a row’s slice of the fabric-
memory NoC is connected to every third port. This third port is
combinationally arbitrated between an LS PE from D0 and the
arbiter of domain D1 (see Fig. 9). Monaco has a total of 18 memory
ports from the fabric to memory; this was the most that would close
timing in a single system-clock cycle.

Non-uniform PE access is key to scaling Monaco. By localiz-
ing communication to a specific row and NUPEA domain before
routing data, Monaco creates a hierarchy of arbitration. Explicit
non-uniformity opens up the network to pipeline data to and from
memory without degrading communication delay for all memory
instructions.

NUPEA also promotes scalability throughout Monaco’s fabric.
Monaco can afford to distribute LS PEs across the fabric without
degrading critical load performance. This is essential to make good
use of the entire fabric. By contrast, an SDA that naively clusters all
LS PEs as close to memory as possible [11] partitions the fabric into
areas of mostly-arithmetic and mostly-LS PEs, creating significant
routing challenges between the partitions.

NUPEA allows the fabric to scale much further than an UPEA
design. However, NUPEA does not scale indefinitely, since the far
domains will eventually become unusable as their memory latency
increases unbounded. Scalability can be increased by optimizing the
fabric-memory NoC topology, but we expect that complementary,
data-centric scaling techniques will be required to scale to truly
huge fabrics (Sec. 2.1). We study the impact of fabric topology and
PE mix in Sec. 7.

5 NUPEA In The Efficient C Compiler (effcc)
Our compiler, effcc, generates optimized DFGs from programs writ-
ten in C and performs PnR to map DFGs to Monaco’s fabric. effcc’s
PnR is NUPEA-aware; it adds simple heuristics to (i) identify critical
loads through static analysis, and (ii) promotes those loads to fast
NUPEA domains during placement.

Dataflow lowering. Users mark C code to offload to Monaco by
decorating functions with __effcc_rip. effcc builds a DFG us-
ing MLIR [44]; it lowers code to standard dialects (e.g., scf). effcc
runs common SDA-specific lowering passes including steer inser-
tion [29] and memory ordering [29, 53, 76] before generating the
DFG in a custom dialect for Monaco’s dataflow instructions.

Automatic parallelization. effcc uses spatial parallelization to
achieve high performance. Specifically, effcc lifts loops to the scf di-
alect’s parallel loop primitive whenever possible, and such loops
are replicated by a chosen parallelism degree. The compiler itera-
tively increases the parallelism degree until PnR fails [92], which
enables it to achieve high performance while while not exceeding
PE and routing resources.

effcc also allows programmers to explicitly control the paral-
lelism factor via compiler directives. Parallelization is critical to
make good use of a large SDA fabric; however, further details of
effcc’s automatic parallelization are outside the scope of this paper.

Identifying critical loads. effcc analyzes DFGs for loads that are
likely to reduce throughput of the program, categorizes them by
criticality, and marks them in the IR. For this work, we use simple
heuristics that focus on loops. Our heuristics identify (a) critical
loads that contribute to long initiation intervals (II), i.e., loads on a
loop-governing recurrence, and (b) inner-loop memory instructions,
as they are likely to execute frequently. effcc considers (a) more

ISCA ’25, June 21–25, 2025, Tokyo, Japan Souradip Ghosh, Graham Gobieski, Keyi Zhang, Brandon Lucia, Nathan Beckmann, and Tony Nowatzki

critical than (b) because long loads along recurrences can block
work for all dependent instructions.

while iAnz < Aend and iVnz < Vend:
 Ai = nzIdxA[iAnz]
 Vi = V.nzIdx[iVnz]

 if Ai == Vi: sum +=

 A.val[Ai] * V.val[Vi]

 iAnz += 1 if Ai <= Vi
 iVnz += 1 if Vi <= Ai

iAnz

< <
Aend Vend

∧ +1+1

LD
nzIdxA V.nzIdx

LD

<= <=

MAC

sum

A.val

∧
V.val

iVnz

Stream-Join / Intersection (L.4-6) Dot-Product
(L.8-9)

Critical
Loads

LD LD

6 nzInBoth[] = nzIdxA ∩ V.nzIdx
8 D[r] = sum(...) # Dot-product

Long II

Figure 10: spmspv’s ∩ and inner dot-product are implemented as a
stream-join in an irregular loop (as in Fig. 5, left). Its DFG features
complex control flow (abstracted as dashed arcs) with critical loads
along a loop-governing recurrence (red arcs) with long II.

Fig. 10 shows an example of (a) and (b) using spmspv’s ∩ and
dot-product. On the left, the high-level operations (L.6,8 of Fig. 3)
are implemented as a stream-join or co-iteration [3, 23]. Iterators
(e.g., iAnz) walk through vectors of non-zero locations (e.g., nzIdx)
in an irregular while loop and update the dot product upon an
index match. The corresponding DFG (right) is complex with heavy
control flow (dashed arcs). Importantly, the DFG shows one of the
recurrences (chain of red arcs starting at iAnz) with a long II, where
several conditional instructions need to run to initiate another
iteration of the loop. The loads along the recurrences (highlighted
in red) are critical; the SDA cannot pipeline any work until the
data-dependent loop condition is resolved. effcc marks those loads
as (a) (most critical) and the loads of the inner dot-product as (b).

Prior work on static or profile-guided analysis also categorizes
loads similarly (loads with long forward dependence chains, loads
in branch conditions, and pointer-chasing [48, 54, 57, 67]) to reduce
stalls on conventional CPUs. More sophisticated analyses are pos-
sible, but we found these simple heuristics quite effective across a
range of computations.

NUPEA-aware PnR. effcc lowers the IR to a netlist representation
used by PnR. effcc then performs PnR, primarily using simulated
annealing (SA), similar to Pathfinder [50] and VPR [14]. To sup-
port NUPEA, we add NUPEA-aware heuristics that prioritize LS
for domains following the partial ordering of Monaco’s NUPEA
domains encoded in the fabric topology. Since domains on Monaco
span multiple columns of PEs, we encode an additional preference
to place instructions in columns closer to memory. Placing instruc-
tions across columns of LS PEs avoids overloading arbiters in any
single row. The heuristic amounts to an ordering of placement pref-
erences: . . . 𝐷1.𝑐0 ⪯ 𝐷0.𝑐2 ⪯ 𝐷0.𝑐1 ⪯ 𝐷0.𝑐0, where 𝑐𝑁 denotes
a column and a lower numbered column is closer to memory. ef-
fcc gives domain-preference in the order of (i) critical loads, (ii)
inner-loop memory instructions, (iii) other memory instructions.
By design, critical loads get preference for fast NUPEA domains.

These heuristics are adopted in the cost functions of the anneal-
ing phases of PnR. Specifically the heuristic acts like a throughput
reduction factor, which we multiply by the critical path delay to get
an overall throughput estimate in the objective function. The initial
placement phase is also customized for NUPEA; LS are placed first,
favoring domains according to the order suggested above. Then

all other instructions are placed greedily in breadth-first order,
traversing through both defs and uses.

6 Experimental Methodology
We implement NUPEA-aware compilation and PnR in effcc and
evaluate Monaco using an in-house microarchitectural simulator.

Compiler.We integrate critical-load analysis and NUPEA-aware
PnR heuristics into effcc’s MLIR compilation stack. effcc’s PnR
optimizes fabric frequency using delays from sign-off timing closure
of the Monaco implementation in the worst-case corner.

Microarchitectural simulator.We simulate Monaco using a mi-
croarchitectural dataflow simulator used internally for design-space
exploration of the fabric topology and FU mix. We model Monaco’s
PEs, instruction execution, fabric-memory NoC, and arbitration as
described in Sec. 4. Arithmetic instructions take 1 cycle to execute,
while control flow executes combinationally [11, 29]. Loads and
stores have variable latency depending on arbitration in the fabric-
memory NoC, cache misses, and bank conflicts. Request and data
transfer through the fabric-memory network takes 1 cycle (system
clock) per arbitration hop; loads and stores in NUPEA domain D0
see no delay in the fabric-memory NoC. We evaluate Monaco with
a total memory size of 8MB, including a 256KB data cache. Main
memory and the data cache are banked 32×. Main memory latency
is 4 cycles and a cache hit takes 2 cycles (both on the system clock).

To simulate Monaco correctly considering the different fabric
and memory clocks, we process events in the memory system and
fabric-memory NoC faster by a factor of the clock divider. For
instance, if the clock divider is 2, then main memory latency is 2
cycles instead of 4, and arbiters have twice the throughput.

Benchmarks.We evaluate 13 workloads from dense and sparse
linear algebra, graph processing, DSP, and ML that are paralleliz-
able by effcc. Many of these workloads feature complex iteration
patterns and indirect memory accesses. We outline them in Table 1.
Table 1: Applications. jacobi2d and heat3d are from Polybench [94].
spmv, spmspv, spmspm, and spadd are generated by TACO [42]. tc is
derived from GAPBS [9]. fft runs arm_rfft_q31 from CMSIS-DSP [4].
ad, ic, and vww are neural networks from MLPerfTiny [6].

Application Inputs

Dense matrix-vector (dmv) Size: 1,024×1,024
2D Jacobi stencil (jacobi2d) Size: 200×200, 100 steps
Heat equation, 3D stencil (heat3d) Size: 40×40, 80 steps
Sparse matrix-dense vector (smv) Size: 4,096×4,096, Sparsity: 90%
Sparse matrix-sparse matrix (spmspm) Size: 512×512, Sparsity: 90%
Sparse matrix-sparse vector (spmspv) Size: 4,096×4,096, Sparsity: 90%
Sparse matrix addition (spadd) Size: 1,024×1,024, Sparsity: 50%
Triangle counting (tc) Nodes: 4096, Sparsity: 5%
Mergesort (mergsort) List size: 220

Fast Fourier transform (fft) Points: 4096, Input size: 220

Anomaly Detection (ad) Size: 5×128
Image Classification (ic) Size: 32×32
Visual Wake Words (vww) Size: 96×96

Inputs are random and chosen such that they fit in memory and
Monaco runs at least 15M instructions. We hand-optimized par-
allelism factors for effcc and chose the one that achieved optimal

NUPEA: Optimizing Critical Loads on Spatial Dataflow Architectures via Non-Uniform Processing-Element Access ISCA ’25, June 21–25, 2025, Tokyo, Japan

NUPEA Ideal UPEA NUMA-UPEA

dmv heat3d jacobi2d spmv spmspm spmspv spadd tc mergesort fft ad ic vww
0.0

0.5

1.0

1.5

E
xe

cu
ti

on
T

im
e

(n
or

m
.

to
N

U
P

E
A

)

0.
66
×

1.
14
×

1.
07
×

0.
78
×

1.
17
×

1.
12
×

0.
96
×

1.
55
×

1.
53
×

0.
70
×

1.
16
×

1.
04
×

0.
95
×

1.
27
×

1.
25
×

0.
97
×

1.
27
×

1.
24
×

0.
92
× 1.

17
×

1.
13
×

0.
67
×

1.
25
×

1.
12
×

0.
86
× 1.

12
×

1.
09
×

0.
93
×

1.
76
×

1.
59
×

0.
58
×

1.
02
×

0.
89
×

0.
69
×

1.
48
×

1.
35
×

0.
68
×

1.
30
×

1.
18
×

Figure 11: The Monaco NUPEA SDA compared against an ideal baseline with 0-cycle UPEA delay and realistic UPEA and NUMA baselines. A
shorter bar indicates faster execution. Monaco improves performance over realistic UPEA by avg 28% and NUMA-UPEA by avg 20%. Monaco is
within 21% of ideal.

Domain-Unaware Only-Domain-Aware effcc

dmv heat3d jacobi2d spmv spmspm spmspv spadd tc mergesort fft ad ic vww
0.0

0.5

1.0

1.5

S
p

ee
d

u
p

(o
ve

r
D

om
ai

n
-U

n
aw

ar
e)

1.
10
×

1.
18
×

1.
18
×

1.
18
×

1.
19
×

1.
22
×

1.
17
× 1.

39
×

1.
00
× 1.

26
×

1.
01
× 1.

31
×

1.
06
×

1.
13
×

1.
20
×

1.
23
×

1.
06
×

1.
06
×

1.
00
×

1.
14
×

1.
20
×

1.
22
× 1.

48
×

1.
48
×

1.
44
×

1.
48
×

Figure 12: Application speedup attained from NUPEA-aware heuristics in PnR. Only-Domain-Aware achieves an avg 16% speedup over no
awareness. effcc fuses both NUPEA-domain-awareness and criticality information to achieve an avg 25% speedup over Domain-Unaware and
an additional 9% speedup over Only-Domain-Aware.

performance for all workloads except tc, ad, ic, and vww; these
were automatically parallelized by effcc.

Performance baselines.We compare performance against two
baselines: a UPEA SDA with uniform memory access and a UPEA
baseline that implements NUMA. Both baselines have the same
fabric topology, PE mix, and memory ports as Monaco. To simulate
uniform PE access, we add a delay of 𝑁 fabric cycles to all memory
requests, where 𝑁 is the UPEA latency. To reach all 72 LS PEs
with fanout-4 arbitration, an additional 𝑁 = 2 fabric cycles are
required. To simulate NUMA, we assign LS PEs randomly to four
NUMA domains and interleave the address space across the NUMA
domains. If a LS PE accesses its local domain, it incurs no fabric-
memory delay; only remote accesses are subject to UPEA latency.
Both SDA baselines model only the delay from UPEA and do not
explicitly arbitrate memory requests to memory ports. Thus, the
baselines have a higher available memory bandwidth than Monaco
in our evaluation.

When comparing against these baselines, we set Monaco’s fabric
clock divider to 2. We empirically confirmed that PnR can achieve
a clock divider of 2 in practice, making Monaco safe to run at that
frequency.

Fabric topology baselines.We compare Monaco’s fabric topology
to alternative NUPEA SDA topologies that cluster LS PEs onto the
side of the fabric closest to memory. Fig. 13 shows the two clustered
topologies that we evaluate (shown on a 12×12 fabric). Clustered-
Single (CS) arranges every row with LS PEs on the right, close to
memory. Clustered-Double (CD) does the same but doubles the
number of memory ports and LS PEs in its fastest NUPEA domain.
To compare, a 12×12 Monaco fabric has 18 memory ports, CS has

12, and CD has 24. In Sec. 7.2, we compare the scalability of these
fabric topologies.

LS LSA LSLS LSLSA

M
em

D0D1D2

…

LS LSA LSLS LSLSA

M
em

D0D1

…

Clustered-Single

Clustered-Double

LS LSLS LSLS LSLSLS
M
em

D0
D2

D1

…

Monaco

×12

×12

×6

Figure 13: Alternate topologies for NUPEA: Clustered-Single (CS)
and Clustered-Double (CD), showing an abbreviated row of PEs for
each topology (LS and A for arithmetic). These topologies cluster all
LS PEs near memory, with all 12 rows featuring LS PEs like the ones
shown. Fig. 9 is simplified here to also show Monaco for comparison.
Unlike CS and CD, Monaco has alternating rows of fully LS or fully
arithmetic PEs; only one of its 6 fully LS rows are shown here.

7 Evaluation
We evaluate Monaco and show that it achieves higher performance
than alternative SDA designs and achieves better fabric scalability
than alternative NUPEA topologies. We demonstrate that NUPEA-
aware PnR also boosts performance.

ISCA ’25, June 21–25, 2025, Tokyo, Japan Souradip Ghosh, Graham Gobieski, Keyi Zhang, Brandon Lucia, Nathan Beckmann, and Tony Nowatzki

NUPEA UPEA0/Ideal UPEA1 UPEA2 UPEA3 UPEA4

dmv heat3d jacobi2d spmv spmspm spmspv spadd tc mergesort fft ad ic vww
0.0

0.5

1.0

1.5

2.0

E
xe

cu
ti

on
ti

m
e

(n
or

m
.

to
N

U
P

E
A

)

0.
66
× 0.

95
× 1.

14
× 1.

39
× 1.

64
×

0.
78
× 0.

96
× 1.

17
× 1.

39
× 1.

64
×

0.
96
× 1.

25
× 1.

55
× 1.

84
× 2.
14
×

0.
70
× 0.

93
× 1.

16
× 1.

39
× 1.

62
×

0.
95
× 1.
11
× 1.
27
× 1.
43
× 1.
58
×

0.
97
×

1.
12
×

1.
27
×

1.
42
×

1.
57
×

0.
92
×

1.
05
×

1.
17
×

1.
30
×

1.
42
×

0.
67
× 0.

93
× 1.

25
×

1.
58
×

1.
92
×

0.
86
×

0.
99
×

1.
12
×

1.
24
×

1.
37
×

0.
93
×

1.
33
×

1.
76
× 2.

22
×

2.
69
×

0.
58
× 0.

82
× 1.

02
× 1.

28
× 1.

55
×

0.
69
× 1.

00
×

1.
48
×

1.
96
×

2.
44
×

0.
68
× 0.

90
×

1.
30
×

1.
71
× 2.

12
×

Figure 14: NUPEA v. a sweep of UPEA SDAs with PE access latencies from 0 (ideal) to 4 cycles. A shorter bar indicates faster execution.

NUPEA UPEA0/Ideal NUMA-UPEA1 NUMA-UPEA2 NUMA-UPEA3 NUMA-UPEA4

dmv heat3d jacobi2d spmv spmspm spmspv spadd tc mergesort fft ad ic vww
0.0

0.5

1.0

1.5

E
xe

cu
ti

on
ti

m
e

(n
or

m
.

to
N

U
P

E
A

)

0.
66
× 0.

87
× 1.

07
× 1.

32
× 1.

58
×

0.
78
× 0.
93
× 1.

12
× 1.

32
× 1.

53
×

0.
96
× 1.

24
× 1.

53
× 1.

84
×

2.
13
×

0.
70
× 0.
85
× 1.

04
× 1.

25
× 1.

47
×

0.
95
× 1.
10
× 1.
25
× 1.
40
× 1.
55
×

0.
97
×

1.
10
× 1.
24
× 1.
39
× 1.
53
×

0.
92
×

1.
02
×

1.
13
×

1.
25
×

1.
38
×

0.
67
× 0.

88
× 1.

12
× 1.

37
× 1.

61
×

0.
86
×

0.
97
×

1.
09
×

1.
21
×

1.
33
×

0.
93
×

1.
25
×

1.
59
× 1.

96
×

2.
34
×

0.
58
× 0.
74
× 0.
89
× 1.

10
× 1.

35
×

0.
69
× 0.

94
×

1.
35
×

1.
77
×

2.
19
×

0.
68
× 0.

86
×

1.
18
×

1.
52
× 1.

87
×

Figure 15: NUPEA v. a sweep of UPEA SDAs with NUMA memory, with a uniform PE access latency on remote access from 0 (ideal) to 4 cycles.
A shorter bar indicates faster execution.

7.1 Primary results
NUPEA achieves better performance over realistic UPEA de-
signs. Fig. 11 plots execution time of Monaco against three UPEA
baselines: (i) Ideal, a UPEA SDA with 0-delay uniform PE ac-
cess, (ii) UPEA, a realistic UPEA SDA with 2-cycle PE access, and
(iii) NUMA-UPEA, a UPEA SDA with 2-cycle PE access and NUMA
memory domains. Execution time is normalized to Monaco.

Monaco achieves higher performance than UPEA and NUMA-
UPEA by 28% and 20% percent, on average. Monaco is also within
21% of Ideal. Monaco generally performs better against UPEA than
NUMA-UPEA because NUMA can sometimes reduce latency for
local accesses while UPEA cannot.

Monaco demonstrates strong performance on sparse applica-
tions, including sparse tensor multiplication and graph processing.
spmspm and spmspv, in particular, feature critical loads along long
recurrence paths. effcc successfully maps these loads to NUPEA
domain D0, allowing them fast access to memory. Monaco achieves
a 27% performance improvement over UPEA on those sparse ten-
sor programs. Notably, spmspm and spmspv are also nearly Ideal
— only 5% and 3% slower — indicating that Monaco successfully
accelerated the key bottleneck in those applications.

Monaco performs very well on the stencil program jacobi2d,
CMSIS-DSP’s fft, and MLPerfTiny’s ic convolutional neural net-
work. These programs have a high number of memory instructions,
and neither UPEA nor NUMA-UPEA can maintain low access time
to memory. jacobi2d and fft are also particularly latency sensitive
because their DFGs feature memory ordering: for correctness, some
memory instructions must finish before succeeding code regions
(e.g., the next stage in an unrolled loop) can begin. effcc andMonaco
accelerate the performance-critical memory instructions in these
workloads — critical and inner-loop loads — by mapping the major-
ity of them to domain D0 for fast fabric-memory communication.

Monaco brings jacobi2d and fft within 4% and 7% of Ideal, respec-
tively, by improving the performance of those memory instructions
that order code regions.

Monaco also performs well on other dense workloads compared
to UPEA and NUMA-UPEA, but is generally farther from Ideal
(>30% slower). Dense matrix algebra and CNNs have regular access
patterns and parallelize easily, which generally enables a higher
number of memory instructions-per-cycle (IPC). These workloads
also rely on lower load latency for most memory instructions in the
program to achieve good performance. We observe higher arbitra-
tion congestion in the fabric-memory network with higher memory
IPC from these dense workloads, which increases average fabric-
memory access latency even in near-memory domains (e.g., D0 and
D1). By contrast, sparse workloads feature control-dependent mem-
ory operations that execute less frequently, and their performance
is dependent on the latency of a few critical loads in the program.
Monaco accelerates those critical loads well, enabling performance
closer to Ideal.

NUPEA-aware PnR boosts performance. Fig. 12 demonstrates
the performance attained by effcc’s PnR heuristics. It compares (i)
Domain-Unaware, a simple domain-unaware heuristic that has
no incentive to place memory instructions on LS PEs close to mem-
ory, (ii) Only-Domain-Aware, a NUPEA-domain aware heuristic
that prioritizes fast-domain placement but does not prioritize criti-
cal or inner-loop instructions, and (iii) effcc, which incorporates
both criticality information and NUPEA-domain awareness to im-
prove performance for all dense and sparse apps that we evaluated.
Only-Domain-Aware achieves a 16% speedup on average over the
Domain-Unaware heuristic. By fusing both criticality information
and NUPEA-awareness into PnR, effcc improves performance over
the Only-Domain-Aware heuristic by an additional 9% on aver-
age, amounting to a total improvement of avg 25% over Domain-
Unaware.

NUPEA: Optimizing Critical Loads on Spatial Dataflow Architectures via Non-Uniform Processing-Element Access ISCA ’25, June 21–25, 2025, Tokyo, Japan

Sparse applications with intersection computation like spmspm
and spmspv benefit the most from criticality-aware PnR. While
Only-Domain-Aware prioritizes placement in fast NUPEA domains,
it does not distinguish between the few critical ones in the ∩ opera-
tion and the many loads and stores that traverse the sparse matrix
outside of the intersection. The results show that identifying critical
loads is essential for spmspm and spmspv. Other sparse applications
(e.g., tc and spadd) or programs with heavy memory ordering (e.g.,
fft) also benefit from effcc’s heuristic. These applications feature
data-dependent control-flow inside inner loops, which effcc can
exploit and map to fast NUPEA domains.

Notably, the dense stencil applications and dense neural network
workloads receive the most benefit from Only-Domain-Aware and
do not improve with criticality information. These programs gen-
erally have inner-loop loads and stores without any on a critical
recurrence, so simple domain-awareness is sufficient to improve
speedups. jacobi2d is an exception; a few of its memory instructions
are placed on a recurrence added by effcc for memory ordering.
Only-Domain-Aware maps most of those critical instructions into
D0 by chance, but effcc targets and maps all of them to the fast
domain, which accounts for a small speedup over Only-Domain-
Aware. dmv also strays from this trend; criticality information fur-
ther improves its performance over Only-Domain-Aware by satu-
rating fast domains with inner-loop loads from the dense matrix.

7.2 Sensitivity and scalability studies
Monaco achieves scalable performance while UPEA SDAs are
highly sensitive to uniform PE access latency.We study the
sensitivity of applications to uniform PE access latency by expand-
ing the plot in Fig. 11. Fig. 14 shows execution time normalized to
Monaco on all our applications. For each workload, we sweep the
uniform access latency from 0-4 cycles. Performance almost linearly
degrades for all applications as UPEA delay increases because pro-
grams cannot tolerate long uniform latency communication. This
confirms the risk of designing an SDA without NUPEA domains.
In comparison, Monaco is on-par with a UPEA system with 1-cycle
uniform delay (UPEA1, 3% faster), improves on UPEA2 by 28%
(same as Sec. 7.1), improves on UPEA3 by 55%, and beats UPEA4
by 82%. Monaco can tolerate long loads from its far domain (i.e., at
least 4-cycle PE access) but still achieves reasonable performance
by prioritizing critical instructions for fast-access domains.

Fig. 15 demonstrates that adding non-uniform memory access
(NUMA) does not solve the unscalability of UPEA seen in Fig. 14.
The plot shows a similar linear degradation in performance, but
NUMAdoes recover some performance compared to UPEA.Monaco
comes within 2% of an SDAwith UPEA latency of 1 cycle for remote
accesses (NUMA-UPEA1), improves on NUMA-UPEA2 by 20%, im-
proves on NUMA-UPEA3 by 44%, and achieves a 68% performance
improvement over NUMA-UPEA4. In principle, a NUMA-aware
compiler could do better than effcc here by cleverly partitioning
data across NUMA domains, but this has proven difficult and has
some fundamental limitations, as discussed in Sec. 2.1.

Overall, introducing non-uniformity into the SDA fabric offers a
complementary approach to scaling data movement to conven-
tional, data-centric approaches. NUPEA is more effective than
NUMA at the scale of Monaco’s SDA: critical memory operations

are accelerated without imposing a high PE access latency on all
instructions.

Monaco’s fabric topology is advantageous to scale fabric re-
sources.We show that Monaco’s fabric layout offers better perfor-
mance and reduces long communication paths on the data NoC
compared to a NUPEA SDA design that clusters LS as close to mem-
ory as possible. We demonstrate by evaluating spmspv on smaller
inputs; effcc automatically parallelizes the workload and compiles
it for Monaco, Clustered-Single (CS) and Clustered-Double (CD).
Recall that CS and CD are NUPEA fabrics that add LS PEs to each
row in the columns closest to memory (see Fig. 13 in Sec. 7). They
have the same number of LS PEs as Monaco, but clustered near
memory. We can scale Monaco, CS, and CD to different fabric sizes
by increasing or decreasing the number of LS PEs and NUPEA
domains; rows of PEs still alternate between arithmetic and LS in
Monaco. In this experiment, we scale fabric size while constraining
data NoC resources.

CS CD Monaco

8x8 16x16 24x24
0.0

2.0

4.0

6.0

8.0

E
xe

cu
ti

on
ti

m
e

(c
yc

le
s)

×106

(a) 2 NoC tracks.

8x8 16x16 24x24
0.0

2.0

4.0

6.0

8.0
×106

(b) 7 NoC tracks.

Figure 16: Execution time of spmspv on Monaco, Clustered-Single
(CS), and Clustered-Double (CD) across increasing fabric sizes on
two extremes of NoC resources (2 vs. 7 tracks). Monaco’s topology
unlocks performance, even with tight resource constraints (2 tracks).

Fig. 16 plots execution time of spmspv on Monaco, CS, and CD
on 8×8, 16×16, and 24×24 fabrics (lower is better). Fig. 16b and
Fig. 16a show two extremes: plenty of NoC tracks and very few.
As fabric size scales with 7 NoC tracks in Fig. 16b, performance
is competitive between all topologies. However, at the extreme
in Fig. 16a, 2 tracks are not enough for CS and CD to achieve good
performance, especially on 16×16 and 24×24 fabrics. CS and CD
face extra routing pressure in PnR, congestion, and long paths from
LS PEs to arithmetic PEs across the fabric because of its topology,
degrading parallelization and performance.

This effect is clear in PnR results. Fig. 17 plots maximum path
delay from PnR for the same fabrics and NoC track settings. At 7
NoC tracks (Fig. 17b), CS and CD remain competitive in maximum
path delay, although Monaco achieves a slightly better delay at
larger fabric sizes. At 2 NoC tracks (Fig. 17a), Monaco’s topology
is valuable: Monaco can parallelize more while maintaining or
reducing the maximum path delay. We observe this effect on the
16×16 fabric: Monaco’s delay is competitive with CS and CD but
parallelizes more, leading to nearly double the performance (shown
in Fig. 16a). The effect is amplified on the 24×24 fabric size, where
CS and CD requires a significantly longer maximum path delay

ISCA ’25, June 21–25, 2025, Tokyo, Japan Souradip Ghosh, Graham Gobieski, Keyi Zhang, Brandon Lucia, Nathan Beckmann, and Tony Nowatzki

8x8 16x16 24x24
0.0

0.5

1.0

1.5

M
ax

P
nR

de
la

y
(n

s)

×102

(a) 2 NoC tracks.

8x8 16x16 24x24
0.0

0.2

0.4

0.6

0.8

1.0
×102

(b) 7 NoC tracks.

Figure 17: Maximum/critical path delay of spmspv on Monaco,
Clustered-Single (CS), and Clustered-Double (CD) across increas-
ing fabric sizes on two extremes of NoC resources (2 vs. 7 tracks).
Monaco’s topology is better for PnR even with tight resource con-
straints (2 tracks).

than Monaco. The result is a better PnR-chosen clock divider, more
spatial parallelization, and better performance for Monaco.

NUPEA domains are key to Monaco’s topology; Monaco can
afford to spread LS PEs across an entire row (unlike CS and CD)
because critical memory operations that need fast access to memory
are prioritized for near-memory domains. The topology keeps LS
PEs close to arithmetic PEs (i.e., in adjacent rows), reducing resource
pressure in PnR and enabling more effective parallelization and
fabric utilization.

8 Conclusion
This paper has introduced non-uniform processing-element access,
or NUPEA, a new opportunity presented by spatial dataflow archi-
tectures to scale data movement. Unlike conventional approaches
that try to move data closer to instructions, NUPEA exploits the
spatial distribution of instructions in spatial dataflow architecture
to place instructions closer to data. The Monaco SDA architecture
demonstrates the benefits of NUPEA, and the effcc compiler ex-
ploits NUPEA by identifying critical loads and placing them near
memory. We have shown that NUPEA closes most of the gap be-
tween a conventional SDA with uniform memory latency and an
idealized memory with fast, global communication.

Acknowledgments
We thank the anonymous reviewers, Tom Jackson, and Samvid
Dharanikota for their feedback on this work.

References
[1] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.

2015. A scalable processing-in-memory accelerator for parallel graph processing.
In 2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture
(ISCA). 105–117. https://doi.org/10.1145/2749469.2750386

[2] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. PIM-Enabled
Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architec-
ture. In Proceedings of the 42nd Annual International Symposium on Computer
Architecture (Portland, Oregon) (ISCA ’15). Association for Computing Machinery,
New York, NY, USA, 336–348. https://doi.org/10.1145/2749469.2750385

[3] Willow Ahrens, Daniel Donenfeld, Fredrik Kjolstad, and Saman Amarasinghe.
2023. Looplets: A Language for Structured Coiteration. In Proceedings of the
21st ACM/IEEE International Symposium on Code Generation and Optimization
(CGO 2023). Association for Computing Machinery, New York, NY, USA, 41–54.
https://doi.org/10.1145/3579990.3580020

[4] Arm. 2025. CMSIS DSP Software Library. https://arm-software.github.io/CMSIS-
DSP/latest/index.html/.

[5] Hadi Asghari-Moghaddam, Amin Farmahini-Farahani, Katherine Morrow,
Jung Ho Ahn, and Nam Sung Kim. 2016. Near-DRAM acceleration with single-
ISA heterogeneous processing in standard memory modules. IEEE Micro 36, 1
(2016), 24–34.

[6] Colby Banbury, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman, Nat Jef-
fries, Csaba Kiraly, Pietro Montino, David Kanter, Sebastian Ahmed, Danilo
Pau, Urmish Thakker, Antonio Torrini, Peter Warden, Jay Cordaro, Giuseppe Di
Guglielmo, Javier Duarte, Stephen Gibellini, Videet Parekh, Honson Tran,
Nhan Tran, Niu Wenxu, and Xu Xuesong. 2021. MLPerf Tiny Benchmark.
arXiv:2106.07597 [cs.LG] https://arxiv.org/abs/2106.07597

[7] Thilini Kaushalya Bandara, Dhananjaya Wijerathne, Tulika Mitra, and Li-Shiuan
Peh. 2022. REVAMP: A Systematic Framework for Heterogeneous CGRA Real-
ization. In Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (Lausanne, Switzer-
land) (ASPLOS 2022). Association for Computing Machinery, New York, NY, USA,
918–932. https://doi.org/10.1145/3503222.3507772

[8] Saambhavi Baskaran, Mahmut Taylan Kandemir, and Jack Sampson. 2022. An
architecture interface and offload model for low-overhead, near-data, distributed
accelerators. In 2022 55th IEEE/ACM International Symposium onMicroarchitecture
(MICRO). 1160–1177. https://doi.org/10.1109/MICRO56248.2022.00083

[9] Scott Beamer, Krste Asanović, and David Patterson. 2017. The GAP Benchmark
Suite. arXiv:1508.03619 [cs.DC] https://arxiv.org/abs/1508.03619

[10] Bradford M. Beckmann, Michael R. Marty, and David A. Wood. 2006. ASR:
Adaptive Selective Replication for CMP Caches. In 2006 39th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’06). 443–454. https://doi.
org/10.1109/MICRO.2006.10

[11] Nathan Beckmann, Brandon Lucia, Graham Gobieski, Tony Nowatzki, Thomas
Jackson, Guénolé Lallement, Keyi Zhang, Amolak Nagi, Atharv Sathe, and Harsh
Desai. 2024. Monza: An Energy-Minimal, General-Purpose Dataflow SoC for the
Internet of Things. IEEE Micro (2024), 1–9. https://doi.org/10.1109/MM.2024.
3426611

[12] Nathan Beckmann and Daniel Sanchez. 2013. Jigsaw: Scalable Software-Defined
Caches. In Proc. of the 22nd intl. conf. on Parallel Architectures and Compilation
Techniques.

[13] Nathan Beckmann, Po-An Tsai, and Daniel Sanchez. 2015. Scaling distributed
cache hierarchies through computation and data co-scheduling. In Proc. of the
21st IEEE intl. symp. on High Performance Computer Architecture (Proc. HPCA-21).

[14] Vaughn Betz and Jonathan Rose. 1997. VPR: A new packing, placement and
routing tool for FPGA research. In International Workshop on Field Programmable
Logic and Applications. Springer, 213–222.

[15] Sergey Blagodurov, Sergey Zhuravlev, Alexandra Fedorova, and Ali Kamali. 2010.
A case for NUMA-aware contention management on multicore systems. In Pro-
ceedings of the 19th International Conference on Parallel Architectures and Compi-
lation Techniques (Vienna, Austria) (PACT ’10). Association for Computing Ma-
chinery, New York, NY, USA, 557–558. https://doi.org/10.1145/1854273.1854350

[16] Mihai Budiu. 2003. Spatial Computation. Ph. D. Dissertation. Carnegie Mellon
University. https://apps.dtic.mil/sti/tr/pdf/ADA461132.pdf

[17] Mihai Budiu and Seth Copen Goldstein. 2002. Pegasus: An Efficient Intermediate
Representation. Technical Report CMU-CS-02-107. Carnegie Mellon University.
20 pages. http://www.cs.cmu.edu/~seth/papers/budiu-tr02.pdf

[18] Jichuan Chang and Gurindar S. Sohi. 2006. Cooperative Caching for Chip
Multiprocessors. In Proceedings of the 33rd Annual International Symposium
on Computer Architecture (ISCA ’06). IEEE Computer Society, USA, 264–276.
https://doi.org/10.1109/ISCA.2006.17

[19] P. Charles, C. Donawa, K. Ebcioglu, C. Grothoff, A. Kielstra, C. von Praun, V.
Saraswat, and V. Sarkar. 2005. X10: AnObject-OrientedApproach toNon-Uniform
Cluster Computing. In International Conference on Object-Oriented Programming,
Systems, Languages, and Applications.

[20] Sangyeun Cho and Lei Jin. 2006. Managing Distributed, Shared L2 Caches
through OS-Level Page Allocation. In Proceedings of the 39th Annual IEEE/ACM

https://doi.org/10.1145/2749469.2750386
https://doi.org/10.1145/2749469.2750385
https://doi.org/10.1145/3579990.3580020
https://arxiv.org/abs/2106.07597
https://arxiv.org/abs/2106.07597
https://doi.org/10.1145/3503222.3507772
https://doi.org/10.1109/MICRO56248.2022.00083
https://arxiv.org/abs/1508.03619
https://arxiv.org/abs/1508.03619
https://doi.org/10.1109/MICRO.2006.10
https://doi.org/10.1109/MICRO.2006.10
https://doi.org/10.1109/MM.2024.3426611
https://doi.org/10.1109/MM.2024.3426611
https://doi.org/10.1145/1854273.1854350
https://apps.dtic.mil/sti/tr/pdf/ADA461132.pdf
http://www.cs.cmu.edu/~seth/papers/budiu-tr02.pdf
https://doi.org/10.1109/ISCA.2006.17

NUPEA: Optimizing Critical Loads on Spatial Dataflow Architectures via Non-Uniform Processing-Element Access ISCA ’25, June 21–25, 2025, Tokyo, Japan

International Symposium onMicroarchitecture (MICRO 39). IEEEComputer Society,
USA, 455–468. https://doi.org/10.1109/MICRO.2006.31

[21] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. 1991. Efficiently Computing Static Single Assignment Form and the
Control Dependence Graph. ACM Trans. Program. Lang. Syst. 13, 4 (oct 1991),
451–490. https://doi.org/10.1145/115372.115320

[22] Vidushi Dadu and Tony Nowatzki. 2022. TaskStream: Accelerating Task-Parallel
Workloads by Recovering Program Structure. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems. New York, NY, USA, 1–13. https://doi.org/10.1145/3503222.
3507706

[23] Vidushi Dadu, Jian Weng, Sihao Liu, and Tony Nowatzki. 2019. Towards general
purpose acceleration by exploiting common data-dependence forms. In Proceed-
ings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.
924–939.

[24] Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh Kumar, and
Mani Azimi. 2012. Application-to-core mapping policies to reduce memory inter-
ference in multi-core systems. In Proceedings of the 21st International Conference
on Parallel Architectures and Compilation Techniques (Minneapolis, Minnesota,
USA) (PACT ’12). Association for Computing Machinery, New York, NY, USA,
455–456. https://doi.org/10.1145/2370816.2370893

[25] Jack B Dennis and David P Misunas. 1975. A preliminary architecture for a basic
data-flow processor. In ISCA.

[26] Daichi Fujiki, ScottMahlke, and ReetuparnaDas. 2019. Duality Cache for Data Par-
allel Acceleration. In Proceedings of the 46th International Symposium on Computer
Architecture (Phoenix, Arizona) (ISCA ’19). Association for ComputingMachinery,
New York, NY, USA, 397–410. https://doi.org/10.1145/3307650.3322257

[27] Fabien Gaud, Baptiste Lepers, Justin Funston, Mohammad Dashti, Alexandra
Fedorova, Vivien Quéma, Renaud Lachaize, and Mark Roth. 2015. Challenges of
memory management on modern NUMA systems. Commun. ACM 58, 12 (Nov.
2015), 59–66. https://doi.org/10.1145/2814328

[28] Graham Gobieski, Ahmet Oguz Atli, Kenneth Mai, Brandon Lucia, and Nathan
Beckmann. 2021. Snafu: an ultra-low-power, energy-minimal CGRA-generation
framework and architecture. In ISCA.

[29] Graham Gobieski, Souradip Ghosh, Marijn Heule, Todd Mowry, Tony Nowatzki,
Nathan Beckmann, and Brandon Lucia. 2023. RipTide: A Programmable, Energy-
Minimal Dataflow Compiler and Architecture. In Proceedings of the 55th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO ’22). 546–564.
https://doi.org/10.1109/MICRO56248.2022.00046

[30] Seth Copen Goldstein, Herman Schmit, Mihai Budiu, Srihari Cadambi, Matthew
Moe, and R Reed Taylor. 2000. PipeRench: A reconfigurable architecture and
compiler. Computer 33, 4 (2000).

[31] Venkatraman Govindaraju, Chen-Han Ho, Tony Nowatzki, Jatin Chhugani, Na-
dathur Satish, Karthikeyan Sankaralingam, and Changkyu Kim. 2012. DySER:
Unifying functionality and parallelism specialization for energy-efficient com-
puting. IEEE Micro 32, 5 (2012).

[32] Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, João Dinis Ferreira,
Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan
Gómez-Luna, and Onur Mutlu. 2021. SIMDRAM: A Framework for Bit-Serial
SIMD Processing Using DRAM. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’21). https://doi.org/10.1145/3445814.3446749

[33] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki. 2009.
Reactive NUCA: near-optimal block placement and replication in distributed
caches. In Proceedings of the 36th Annual International Symposium on Computer
Architecture (ISCA ’09). https://doi.org/10.1145/1555754.1555779

[34] MiladHashemi, Eiman Ebrahimi, OnurMutlu, Yale N Patt, et al. 2016. Accelerating
dependent cache misses with an enhanced memory controller. In 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA). IEEE,
444–455.

[35] John L Hennessy and David A Patterson. 2011. Computer architecture: a quanti-
tative approach. Elsevier.

[36] Olivia Hsu, Maxwell Strange, Ritvik Sharma, Jaeyeon Won, Kunle Olukotun,
Joel S. Emer, Mark A. Horowitz, and Fredrik Kjølstad. 2023. The Sparse Abstract
Machine. In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3 (Vancouver,
BC, Canada) (ASPLOS 2023). Association for Computing Machinery, New York,
NY, USA, 710–726. https://doi.org/10.1145/3582016.3582051

[37] Jiayi Huang, Ramprakash Reddy Puli, Pritam Majumder, Sungkeun Kim, Rahul
Boyapati, Ki Hwan Yum, and Eun Jung Kim. 2019. Active-Routing: Compute on
the Way for Near-Data Processing. In 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 674–686.

[38] Manupa Karunaratne, Aditi Kulkarni Mohite, Tulika Mitra, and Li-Shiuan Peh.
2017. HyCUBE: A CGRAwith reconfigurable single-cycle multi-hop interconnect.
In DAC.

[39] Huifeng Ke, Sihao Liu, Licheng Guo, Zifan He, Linghao Song, Suhail Basalama,
Yuze Chi, Tony Nowatzki, and Jason Cong. 2025. NoH: NoC Compilation in High
Level Synthesis. In The 33rd IEEE International Symposium on Field-Programmable

Custom Computing Machines.
[40] Changkyu Kim, Doug Burger, and Stephen W. Keckler. 2002. An adaptive, non-

uniform cache structure for wire-delay dominated on-chip caches. In Proceedings
of the 10th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS X). https://doi.org/10.1145/605397.
605420

[41] Gwangsun Kim, Niladrish Chatterjee, Mike O’Connor, and Kevin Hsieh. 2017.
Toward Standardized Near-Data Processing with Unrestricted Data Placement
for GPUs. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (Denver, Colorado) (SC ’17). As-
sociation for Computing Machinery, New York, NY, USA, Article 24, 12 pages.
https://doi.org/10.1145/3126908.3126965

[42] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amaras-
inghe. 2017. The tensor algebra compiler. Proc. ACM Program. Lang. 1, OOPSLA,
Article 77 (oct 2017), 29 pages. https://doi.org/10.1145/3133901

[43] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Had-
jis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis,
and Kunle Olukotun. 2018. Spatial: a language and compiler for applica-
tion accelerators. In Proceedings of the 39th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (Philadelphia, PA, USA) (PLDI
2018). Association for Computing Machinery, New York, NY, USA, 296–311.
https://doi.org/10.1145/3192366.3192379

[44] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-
sandr Zinenko. 2021. MLIR: scaling compiler infrastructure for domain specific
computation. In Proceedings of the 2021 IEEE/ACM International Symposium on
Code Generation and Optimization (Virtual Event, Republic of Korea) (CGO ’21).
IEEE Press, 2–14. https://doi.org/10.1109/CGO51591.2021.9370308

[45] Walter Lee, Rajeev Barua, Matthew Frank, Devabhaktuni Srikrishna, Jonathan
Babb, Vivek Sarkar, and Saman Amarasinghe. 1998. Space-time scheduling of
instruction-level parallelism on a raw machine. In Proceedings of the Eighth
International Conference on Architectural Support for Programming Languages
and Operating Systems (San Jose, California, USA) (ASPLOS VIII). Association
for Computing Machinery, New York, NY, USA, 46–57. https://doi.org/10.1145/
291069.291018

[46] Jacob Leverich, Hideho Arakida, Alex Solomatnikov, Amin Firoozshahian, Mark
Horowitz, and Christos Kozyrakis. 2007. Comparing memory systems for chip
multiprocessors. In Proceedings of the 34th Annual International Symposium on
Computer Architecture (San Diego, California, USA) (ISCA ’07). Association for
Computing Machinery, New York, NY, USA, 358–368. https://doi.org/10.1145/
1250662.1250707

[47] Elliot Lockerman, Axel Feldmann, Mohammad Bakhshalipour, Alexandru
Stanescu, Shashwat Gupta, Daniel Sanchez, and Nathan Beckmann. 2020. Livia:
Data-centric computing throughout the memory hierarchy. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. 417–433.

[48] Chi-Keung Luk and Todd C. Mowry. 1996. Compiler-based prefetching for re-
cursive data structures. In Proceedings of the Seventh International Conference on
Architectural Support for Programming Languages and Operating Systems (Cam-
bridge, Massachusetts, USA) (ASPLOS VII). Association for Computing Machinery,
New York, NY, USA, 222–233. https://doi.org/10.1145/237090.237190

[49] M. ImranMasud and Steven J. E.Wilton. 1999. A New Switch Block for Segmented
FPGAs. In Proceedings of the 9th International Workshop on Field-Programmable
Logic and Applications (FPL ’99). Springer-Verlag, Berlin, Heidelberg, 274–281.

[50] L. McMurchie and C. Ebeling. 1995. PathFinder: A Negotiation-Based
Performance-Driven Router for FPGAs. In Third International ACM Symposium
on Field-Programmable Gate Arrays. 111–117. https://doi.org/10.1109/FPGA.1995.
242049

[51] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy Lauw-
ereins. 2003. ADRES: An architecture with tightly coupled VLIW processor
and coarse-grained reconfigurable matrix. In International Conference on Field
Programmable Logic and Applications. Springer, 61–70.

[52] Ethan Mirsky, Andre DeHon, et al. 1996. MATRIX: a reconfigurable computing
architecture with configurable instruction distribution and deployable resources..
In FCCM, Vol. 96. 17–19.

[53] Mahim Mishra, Timothy J. Callahan, Tiberiu Chelcea, Girish Venkataramani,
Seth C. Goldstein, and Mihai Budiu. 2006. Tartan: evaluating spatial computation
for whole program execution. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS XII). https://doi.org/10.1145/1168857.1168878

[54] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. 1992. Design and evaluation
of a compiler algorithm for prefetching. In Proceedings of the Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS V). 62–73. https://doi.org/10.1145/143365.143488

[55] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. 2016. Whirlpool:
Improving dynamic cache management with static data classification. In Proc.
of the 21st intl. conf. on Architectural Support for Programming Languages and
Operating Systems (Proc. ASPLOS-XXI).

https://doi.org/10.1109/MICRO.2006.31
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/3503222.3507706
https://doi.org/10.1145/3503222.3507706
https://doi.org/10.1145/2370816.2370893
https://doi.org/10.1145/3307650.3322257
https://doi.org/10.1145/2814328
https://doi.org/10.1109/MICRO56248.2022.00046
https://doi.org/10.1145/3445814.3446749
https://doi.org/10.1145/1555754.1555779
https://doi.org/10.1145/3582016.3582051
https://doi.org/10.1145/605397.605420
https://doi.org/10.1145/605397.605420
https://doi.org/10.1145/3126908.3126965
https://doi.org/10.1145/3133901
https://doi.org/10.1145/3192366.3192379
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/291069.291018
https://doi.org/10.1145/291069.291018
https://doi.org/10.1145/1250662.1250707
https://doi.org/10.1145/1250662.1250707
https://doi.org/10.1145/237090.237190
https://doi.org/10.1109/FPGA.1995.242049
https://doi.org/10.1109/FPGA.1995.242049
https://doi.org/10.1145/1168857.1168878
https://doi.org/10.1145/143365.143488

ISCA ’25, June 21–25, 2025, Tokyo, Japan Souradip Ghosh, Graham Gobieski, Keyi Zhang, Brandon Lucia, Nathan Beckmann, and Tony Nowatzki

[56] Quan M Nguyen and Daniel Sanchez. 2021. Fifer: Practical Acceleration of
Irregular Applications on Reconfigurable Architectures. In MICRO.

[57] Quan M. Nguyen and Daniel Sanchez. 2023. Phloem: Automatic Acceleration
of Irregular Applications with Fine-Grain Pipeline Parallelism. In 2023 IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
1262–1274. https://doi.org/10.1109/HPCA56546.2023.10071026

[58] Rishiyur S Nikhil et al. 1990. Executing a program on the MIT tagged-token
dataflow architecture. IEEE Transactions on computers (1990).

[59] Tony Nowatzki, Newsha Ardalani, Karthikeyan Sankaralingam, and Jian Weng.
2018. Hybrid optimization/heuristic instruction scheduling for programmable
accelerator codesign. In PACT 27.

[60] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankar-
alingam. 2017. Stream-dataflow acceleration. In ISCA 44.

[61] Tony Nowatzki, Vinay Gangadhar, and Karthikeyan Sankaralingam. 2015. Explor-
ing the potential of heterogeneous von neumann/dataflow execution models. In
Proceedings of the 42nd Annual International Symposium on Computer Architecture.
298–310.

[62] Geraldo F Oliveira, Ataberk Olgun, Abdullah Giray Yağlıkçı, F Nisa Bostancı,
Juan Gómez-Luna, Saugata Ghose, and Onur Mutlu. 2024. MIMDRAM: An end-
to-end processing-using-DRAM system for high-throughput, energy-efficient
and programmer-transparent multiple-instruction multiple-data computing. In
2024 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 186–203.

[63] GregoryM. Papadopoulos and David E. Culler. 1990. Monsoon: An Explicit Token-
Store Architecture. In Proceedings of the 17th Annual International Symposium
on Computer Architecture (Seattle, Washington, USA) (ISCA ’90). Association for
Computing Machinery, New York, NY, USA, 82–91. https://doi.org/10.1145/
325164.325117

[64] Angshuman Parashar, Michael Pellauer, Michael Adler, Bushra Ahsan, Neal
Crago, Daniel Lustig, Vladimir Pavlov, Antonia Zhai, Mohit Gambhir, Aamer
Jaleel, Randy Allmon, Rachid Rayess, Stephen Maresh, and Joel Emer. 2013. Trig-
gered Instructions: a control paradigm for spatially-programmed architectures. In
Proceedings of the 40th Annual International Symposium on Computer Architecture
(ISCA ’13). https://doi.org/10.1145/2485922.2485935

[65] Ashutosh Pattnaik, Xulong Tang, Onur Kayiran, Adwait Jog, Asit Mishra, Mah-
mut T Kandemir, Anand Sivasubramaniam, and Chita R Das. 2019. Opportunistic
computing in gpu architectures. In Proceedings of the 46th International Sympo-
sium on Computer Architecture. 210–223.

[66] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao,
Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. 2017.
Plasticine: A reconfigurable architecture for parallel patterns. In ISCA 44.

[67] Ram Rangan, Neil Vachharajani, Manish Vachharajani, and David I. August. 2004.
Decoupled Software Pipelining with the Synchronization Array. In Proceedings
of the 13th International Conference on Parallel Architectures and Compilation
Techniques (PACT ’04). IEEE Computer Society, USA, 177–188.

[68] Alexander Rucker, Matthew Vilim, Tian Zhao, Yaqi Zhang, Raghu Prab-
hakar, and Kunle Olukotun. 2021. Capstan: A Vector RDA for Sparsity.
arXiv:2104.12760 [cs.AR]

[69] Karthik Sangaiah, Michael Lui, Ragh Kuttappa, Baris Taskin, and Mark Hemp-
stead. 2020. SnackNoC: Processing in the Communication Layer. In 2020 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
461–473. https://doi.org/10.1109/HPCA47549.2020.00045

[70] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu Kim,
Jaehyuk Huh, Doug Burger, Stephen W Keckler, and Charles R Moore. 2003.
Exploiting ILP, TLP, and DLP with the polymorphous TRIPS architecture. In
ISCA 30.

[71] Karu Sankaralingam, Tony Nowatzki, Greg Wright, Poly Palamuttam, Jitu Khare,
Vinay Gangadhar, and Preyas Shah. 2021. Mozart: Designing for Software
Maturity and the Next Paradigm for Chip Architectures. In IEEE Hot Chips
33 Symposium, HCS 2021, Palo Alto, CA, USA, August 22-24, 2021. IEEE, 1–20.
https://doi.org/10.1109/HCS52781.2021.9567306

[72] Brian C. Schwedock and Nathan Beckmann. 2024. Leviathan: A Unified System
for General-Purpose Near-Data Computing. In 2024 57th IEEE/ACM International
Symposium on Microarchitecture (MICRO). https://doi.org/10.1109/MICRO61859.
2024.00095

[73] B. C. Schwedock, P. Yoovidhya, J. Seibert, and N. Beckmann. 2022. täkō: A Poly-
morphic Cache Hierarchy for General-Purpose Optimization of Data Movement.
In Proc. of the 49th annual Intl. Symp. on Computer Architecture (Proc. ISCA-49).

[74] Nathan Serafin, Souradip Ghosh, Harsh Desai, Nathan Beckmann, and Brandon
Lucia. 2023. Pipestitch: An energy-minimal dataflow architecture with light-
weight threads. In Proceedings of the 56th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO ’23). Association for Computing Machinery,
New York, NY, USA, 1409–1422. https://doi.org/10.1145/3613424.3614283

[75] H. Singh, Ming-Hau Lee, Guangming Lu, F.J. Kurdahi, N. Bagherzadeh, and E.M.
Chaves Filho. 2000. MorphoSys: an integrated reconfigurable system for data-
parallel and computation-intensive applications. IEEE Trans. Comput. 49, 5 (2000),
465–481. https://doi.org/10.1109/12.859540

[76] Steven Swanson, Ken Michelson, Andrew Schwerin, and Mark Oskin. 2003.
WaveScalar. In MICRO 36.

[77] Steven Swanson, Andrew Schwerin, Martha Mercaldi, Andrew Petersen, Andrew
Putnam, Ken Michelson, Mark Oskin, and Susan J. Eggers. 2007. The WaveScalar
architecture. ACM Trans. Comput. Syst. (2007). https://doi.org/10.1145/1233307.
1233308

[78] Ian Swarbrick, Dinesh Gaitonde, Sagheer Ahmad, Bala Jayadev, Jeff Cuppett,
Abbas Morshed, Brian Gaide, and Ygal Arbel. 2019. Versal Network-on-Chip
(NoC). In 2019 IEEE Symposium on High-Performance Interconnects (HOTI). 13–17.
https://doi.org/10.1109/HOTI.2019.00016

[79] W. Thies, M. Karczmarek, and S. Amarasinghe. 2002. StreamIt: A Language for
Streaming Applications. In CC.

[80] William F Thies, Michael Karczmarek, Michael Gordon, David Maze, Jeremy
Wong, Henry Hoffmann, Matthew Brown, and Saman Amarasinghe. 2001.
StreamIT: A Complier for Streaming Applications. Technical Report. MIT.

[81] Boyu Tian, Qihang Chen, and Mingyu Gao. 2023. ABNDP: Co-Optimizing Data
Access and Load Balance in Near-Data Processing. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3 (ASPLOS 2023). https://doi.org/10.1145/3582016.
3582026

[82] Christopher Torng, Peitian Pan, Yanghui Ou, Cheng Tan, and Christopher Batten.
2021. Ultra-elastic CGRAs for irregular loop specialization. In 2021 IEEE Inter-
national Symposium on High-Performance Computer Architecture (HPCA). IEEE,
412–425.

[83] Po-An Tsai, Nathan Beckmann, and Daniel Sanchez. 2017. Jenga: Software-
Defined Cache Hierarchies. In Proc. of the 44th annual Intl. Symp. on Computer
Architecture (Proc. ISCA-44).

[84] Matthew Vilim, Alexander Rucker, and Kunle Olukotun. 2021. Aurochs: An
architecture for dataflow threads. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 402–415.

[85] Dani Voitsechov and Yoav Etsion. 2014. Single-graph multiple flows: energy effi-
cient design alternative for GPGPUs. In Proceeding of the 41st Annual International
Symposium on Computer Architecuture (ISCA ’14).

[86] E. Waingold et al. 1997. Baring It All to Software: Raw Machines. In IEEE Com-
puter.

[87] Zhengrong Wang, Christopher Liu, Aman Arora, Lizy John, and Tony Nowatzki.
2023. Infinity Stream: Portable and Programmer-Friendly In-/Near-Memory
Fusion. In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3 (ASPLOS
2023). https://doi.org/10.1145/3582016.3582032

[88] Zhengrong Wang, Christopher Liu, Nathan Beckmann, and Tony Nowatzki. 2023.
Affinity Alloc: Taming Not-So Near-Data Computing. In Proceedings of the 56th
Annual IEEE/ACM International Symposium on Microarchitecture (Toronto, ON,
Canada) (MICRO ’23). 784–799. https://doi.org/10.1145/3613424.3623778

[89] Zhengrong Wang and Tony Nowatzki. 2019. Stream-based memory access spe-
cialization for general purpose processors. In Proceedings of the 46th International
Symposium on Computer Architecture (ISCA ’19). Association for Computing Ma-
chinery, New York, NY, USA, 736–749. https://doi.org/10.1145/3307650.3322229

[90] Zhengrong Wang, Jian Weng, Sihao Liu, and Tony Nowatzki. 2022. Near-Stream
Computing: General and Transparent Near-Cache Acceleration. In 2022 IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
331–345. https://doi.org/10.1109/HPCA53966.2022.00032

[91] Zhengrong Wang, Jian Weng, Jason Lowe-Power, Jayesh Gaur, and Tony
Nowatzki. 2021. Stream Floating: Enabling Proactive and Decentralized Cache Op-
timizations. In 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). 640–653. https://doi.org/10.1109/HPCA51647.2021.00060

[92] Jian Weng, Sihao Liu, Dylan Kupsh, and Tony Nowatzki. 2022. Unifying Spatial
Accelerator Compilation With Idiomatic and Modular Transformations. IEEE
Micro 42, 5 (2022), 59–69. https://doi.org/10.1109/MM.2022.3189976

[93] Jian Weng, Sihao Liu, Zhengrong Wang, Vidushi Dadu, and Tony Nowatzki. 2020.
A Hybrid Systolic-Dataflow Architecture for Inductive Matrix Algorithms. In
HPCA.

[94] Tomofumi Yuki and Louis-Noel Pouchet. 2016. PolyBench 4.2.1: The polyhedral
benchmark suite.

https://doi.org/10.1109/HPCA56546.2023.10071026
https://doi.org/10.1145/325164.325117
https://doi.org/10.1145/325164.325117
https://doi.org/10.1145/2485922.2485935
https://arxiv.org/abs/2104.12760
https://doi.org/10.1109/HPCA47549.2020.00045
https://doi.org/10.1109/HCS52781.2021.9567306
https://doi.org/10.1109/MICRO61859.2024.00095
https://doi.org/10.1109/MICRO61859.2024.00095
https://doi.org/10.1145/3613424.3614283
https://doi.org/10.1109/12.859540
https://doi.org/10.1145/1233307.1233308
https://doi.org/10.1145/1233307.1233308
https://doi.org/10.1109/HOTI.2019.00016
https://doi.org/10.1145/3582016.3582026
https://doi.org/10.1145/3582016.3582026
https://doi.org/10.1145/3582016.3582032
https://doi.org/10.1145/3613424.3623778
https://doi.org/10.1145/3307650.3322229
https://doi.org/10.1109/HPCA53966.2022.00032
https://doi.org/10.1109/HPCA51647.2021.00060
https://doi.org/10.1109/MM.2022.3189976

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Data-centric scaling of data movement
	2.2 New opportunities to scale data movement in SDAs

	3 Non-Uniform Processing-Element Access
	4 The Monaco NUPEA Microarchitecture
	4.1 Monaco's dataflow model
	4.2 Monaco's NUPEA fabric

	5 NUPEA In The Efficient C Compiler (effcc)
	6 Experimental Methodology
	7 Evaluation
	7.1 Primary results
	7.2 Sensitivity and scalability studies

	8 Conclusion
	Acknowledgments
	References

